1. |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663): 1532-1535.
|
2. |
Bhagirath VC, Dwivedi DJ, Liaw PC. Comparison of the proinflammatory and procoagulant properties of nuclear, mitochondrial, and bacterial DNA. Shock, 2015, 44(3): 265-271.
|
3. |
Abrams ST, Zhang N, Manson J, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med, 2013, 187(2): 160-169.
|
4. |
Abrams ST, Zhang N, Dart C, et al. Human CRP defends against the toxicity of circulating histones. J Immunol, 2013, 191(5): 2495-2502.
|
5. |
Biron BM, Chung CS, O’Brien XM, et al. Cl-amidine prevents histone 3 citrullination and neutrophil extracellular trap formation, and improves survival in a murine sepsis model. J Innate Immun, 2017, 9(1): 22-32.
|
6. |
Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta, 2010, 1799(1-2): 149-156.
|
7. |
Martinod K, Witsch T, Farley K, et al. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemost, 2016, 14(3): 551-558.
|
8. |
Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep, 2014, 8(3): 883-896.
|
9. |
Majewski P, Majchrzak-Gorecka M, Grygier B, et al. Inhibitors of serine proteases in regulating the production and function of neutrophil extracellular traps. Front Immunol, 2016, 7: 261.
|
10. |
Yuen J, Pluthero FG, Douda DN, et al. NETosing neutrophils activate complement both on their own nets and bacteria via alternative and non-alternative pathways. Front Immunol, 2016, 7: 137.
|
11. |
Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res, 2017, 120(4): 736-743.
|
12. |
Muniz VS, Silva JC, Braga YAV, et al. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J Allergy Clin Immunol, 2018, 141(2): 571-585.
|
13. |
von Köckritz-Blickwede M, Goldmann O, Thulin P, et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood, 2008, 111(6): 3070-3080.
|
14. |
Hartl D. Macrophages and platelets join forces to release kidney-damaging DNA traps. Nat Med, 2018, 24(2): 128-129.
|
15. |
Ullah I, Ritchie ND, Evans TJ. The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun, 2017, 23(5): 413-423.
|
16. |
Etulain J, Martinod K, Wong SL, et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood, 2015, 126(2): 242-246.
|
17. |
Behnen M, Leschczyk C, Möller S, et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRⅢB and Mac-1. J Immunol, 2014, 193(4): 1954-1965.
|
18. |
Alemán OR, Mora N, Cortes-Vieyra R, et al. Differential use of human neutrophil Fcγ receptors for inducing neutrophil extracellular trap formation. J Immunol Res, 2016, 2016: 2908034.
|
19. |
Chen K, Nishi H, Travers R, et al. Endocytosis of soluble immune complexes leads to their clearance by FcγR Ⅲ B but induces neutrophil extracellular traps via FcγR Ⅱ A in vivo. Blood, 2012, 120(22): 4421-4431.
|
20. |
Vong L, Lorentz RJ, Assa A, et al. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol, 2014, 192(4): 1870-1877.
|
21. |
Kamoshida G, Kikuchi-Ueda T, Nishida S, et al. Pathogenic bacterium Acinetobacter baumannii inhibits the formation of neutrophil extracellular traps by suppressing neutrophil adhesion. Front Immunol, 2018, 9: 178.
|
22. |
Hoffmann JHO, Schaekel K, Hartl D, et al. Dimethyl fumarate modulates neutrophil extracellular trap formation in a glutathione- and superoxide-dependent manner. Br J Dermatol, 2018, 178(1): 207-214.
|
23. |
O’Brien XM, Biron BM, Reichner JS. Consequences of extracellular trap formation in sepsis. Curr Opin Hematol, 2017, 24(1): 66-71.
|
24. |
Park SY, Shrestha S, Youn YJ, et al. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am J Respir Crit Care Med, 2017, 196(5): 577-589.
|
25. |
Yang S, Qi H, Kan K, et al. Neutrophil extracellular traps promote hypercoagulability in patients with sepsis. Shock, 2017, 47(2): 132-139.
|
26. |
Chen L, Zhao Y, Lai D, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis, 2018, 9(6): 597.
|
27. |
Nakazawa D, Tomaru U, Suzuki A, et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum, 2012, 64(11): 3779-3787.
|
28. |
Kusunoki Y, Nakazawa D, Shida H, et al. Peptidylarginine deiminase inhibitor suppresses neutrophil extracellular trap formation and MPO-ANCA production. Front Immunol, 2016, 7: 227.
|
29. |
Hasegawa J, Wakai S, Kono M, et al. An autopsy case of myeloperoxidase-anti-neutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis accompanied by cryoglobulinemic vasculitis affecting the kidneys, skin, and gastrointestinal tract. Intern Med, 2018, 57(18): 2739-2745.
|
30. |
Yoshida M, Yamada M, Sudo Y, et al. Myeloperoxidase anti-neutrophil cytoplasmic antibody affinity is associated with the formation of neutrophil extracellular traps in the kidney and vasculitis activity in myeloperoxidase anti-neutrophil cytoplasmic antibody-associated microscopic polyangiitis. Nephrology (Carlton), 2016, 21(7): 624-629.
|
31. |
Takeuchi H, Kawasaki T, Shigematsu K, et al. Neutrophil extracellular traps in neuropathy with anti-neutrophil cytoplasmic autoantibody-associated microscopic polyangiitis. Clin Rheumatol, 2017, 36(4): 913-917.
|
32. |
Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut, 2013, 62(1): 102-111.
|
33. |
Murthy P, Singhi AD, Ross MA, et al. Enhanced neutrophil extracellular trap formation in acute pancreatitis contributes to disease severity and is reduced by chloroquine. Front Immunol, 2019, 10: 28.
|
34. |
Merza M, Hartman H, Rahman M, et al. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology, 2015, 149(7): 1920-1931.e8.
|
35. |
Szatmary P, Liu T, Abrams ST, et al. Systemic histone release disrupts plasmalemma and contributes to necrosis in acute pancreatitis. Pancreatology, 2017, 17(6): 884-892.
|
36. |
Madhi R, Rahman M, Taha D, et al. Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis. J Cell Physiol, 2019, 234(7): 11850-11860.
|
37. |
Cao M, Yu M, Zhang Y, et al. Neutrophil extracellular traps exacerbate inflammatory responses and thrombotic tendency in both a murine colitis model and patients with inflammatory bowel disease. 2017. http://so.hiqq.com.cn/.
|
38. |
Mohanty T, Fisher J, Bakochi A, et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun, 2019, 10(1): 1667.
|