1. |
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci, 2015, 72(20): 3831-3851.
|
2. |
Hammond JS, Guha IN, Beckingham IJ, et al. Prediction, prevention and management of postresection liver failure. Br J Surg, 2011, 98(9): 1188-1200.
|
3. |
Fatemi M, Wade PA. MBD family proteins: reading the epigenetic code. J Cell Sci, 2006, 119(Pt 15): 3033-3037.
|
4. |
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 2012, 13(7): 484-492.
|
5. |
Li Z, Feng J, Sun X. Hypomethylation and hypohydroxymethylation of DNA in hepatocellular carcinoma and cholangiocarcinoma. Hepatology, 2016, 63(5): 1745-1746.
|
6. |
Kanduc D, Ghoshal A, Quagliariello E, et al. DNA hypomethylation in ethionine-induced rat preneoplastic hepatocyte nodules. Biochem Biophys Res Commun, 1988, 150(2): 739-744.
|
7. |
Götze S, Schumacher EC, Kordes C, et al. Epigenetic changes during hepatic stellate cell activation. PLoS One, 2015, 10(6): e0128745.
|
8. |
El Taghdouini A, Sørensen AL, Reiner AH, et al. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget, 2015, 6(29): 26729-26745.
|
9. |
Deng X, Chen YX, Zhang X, et al. Hepatic stellate cells modulate the differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells. J Cell Physiol, 2008, 217(1): 138-144.
|
10. |
Kocabayoglu P, Zhang DY, Kojima K, et al. Induction and contribution of beta platelet-derived growth factor signalling by hepatic stellate cells to liver regeneration after partial hepatectomy in mice. Liver Int, 2016, 36(6): 874-882.
|
11. |
Donahower BC, McCullough SS, Hennings L, et al. Human recombinant vascular endothelial growth factor reduces necrosis and enhances hepatocyte regeneration in a mouse model of acetaminophen toxicity. J Pharmacol Exp Ther, 2010, 334(1): 33-43.
|
12. |
Ding BS, Nolan DJ, Butler JM, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468(7321): 310-315.
|
13. |
Tan Q, Hu J, Yu X, et al. The role of IL-1 family members and Kupffer cells in liver regeneration. Biomed Res Int, 2016, 2016: 6495793.
|
14. |
Zhang W, Chen XP, Zhang WG, et al. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration. World J Gastroenterol, 2009, 15(5): 552-560.
|
15. |
Yang X, He C, Zhu L, et al. Comparative analysis of regulatory role of Notch signaling pathway in 8 types liver cell during liver regeneration. Biochem Genet, 2019, 57(1): 1-19.
|
16. |
Chang CF, Yang J, Zhao WM, et al. Gene expression profiling analysis of 5-hydroxytryptamine signaling pathway in rat regenerating liver and different types of liver cells. Genet Mol Res, 2015, 14(2): 3409-3420.
|
17. |
Górnikiewicz B, Ronowicz A, Podolak J, et al. Epigenetic basis of regeneration: analysis of genomic DNA methylation profiles in the MRL/MpJ mouse. DNA Res, 2013, 20(6): 605-621.
|
18. |
Liang P, Song F, Ghosh S, et al. Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics, 2011, 12(1): 231.
|
19. |
Chernyavskaya Y, Mudbhary R, Zhang C, et al. Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development, 2017, 144(16): 2925-2939.
|
20. |
Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell, 2006, 126(6): 1189-1201.
|
21. |
White UA, Stephens JM. The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des, 2011, 17(4): 340-346.
|
22. |
Lai HS, Lin WH, Lai SL, et al. Interleukin-6 mediates angio-tensinogen gene expression during liver regeneration. PLoS One, 2013, 8(7): e67868.
|
23. |
Chou CH, Lai SL, Chen CN, et al. IL-6 regulates Mcl-1L expression through the JAK/PI3K/Akt/CREB signaling pathway in hepatocytes: implication of an anti-apoptotic role during liver regeneration. PLoS One, 2013, 8(6): e66268.
|
24. |
Jung J, Moon JW, Choi JH, et al. Epigenetic alterations of IL-6/STAT3 signaling by placental stem cells promote hepatic regeneration in a rat model with CCl4-induced liver injury. Int J Stem Cells, 2015, 8(1): 79-89.
|
25. |
Guo G, Xia J, Bao J, et al. Expression of SOCS3 throughout liver regeneration is not regulated by DNA methylation. Hepatobiliary Pancreat Dis Int, 2012, 11(4): 401-406.
|
26. |
Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene, 2005, 24(42): 6406-6417.
|
27. |
Tischoff I, Hengge UR, Vieth M, et al. Methylation of SOCS-3 and SOCS-1 in the carcinogenesis of Barrett’s adenocarcinoma. Gut, 2007, 56(8): 1047-1053.
|
28. |
He B, You L, Uematsu K, et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A, 2003, 100(24): 14133-14138.
|
29. |
Weber A, Hengge U R, Bardenheuer W, et al. SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene, 2005, 24(44): 6699-6708.
|
30. |
Di Gioia S, Bianchi P, Destro A, et al. Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver. BMC Cancer, 2006, 6: 89.
|
31. |
Li D, Fan J, Li Z, et al. DNA methylation dynamics in the rat EGF gene promoter after partial hepatectomy. Genet Mol Biol, 2014, 37(2): 439-443.
|
32. |
Kren BT, Trembley JH, Steer CJ. Alterations in mRNA stability during rat liver regeneration. Am J Physiol, 1996, 270(5 Pt 1): G763-G777.
|
33. |
李紫薇, 徐存拴, 靳伟. 大鼠肝再生中 Fcgr2a 启动子区甲基化变化和作用研究. 河南师范大学, 2016.
|
34. |
Robertson KD, Keyomarsi K, Gonzales FA, et al. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res, 2000, 28(10): 2108-2113.
|
35. |
Elliott EN, Sheaffer KL, Schug J, et al. DNMT1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development, 2015, 142(12): 2163-2172.
|
36. |
Brown KD, Robertson KD. DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet, 2007, 39(3): 289-290.
|
37. |
Chen T, Hevi S, Gay F, et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet, 2007, 39(3): 391-396.
|
38. |
Jackson-Grusby L, Beard C, Possemato R, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet, 2001, 27(1): 31-39.
|
39. |
Campbell S, Ismail IH, Young LC, et al. Polycomb repressive complex 2 contributes to DNA double-strand break repair. Cell Cycle, 2013, 12(16): 2675-2683.
|
40. |
Kaji K, Factor VM, Andersen JB, et al. DNMT1 is a required genomic regulator for murine liver histogenesis and regeneration. Hepatology, 2016, 64(2): 582-598.
|
41. |
Sharif J, Muto M, Takebayashi S, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting DNMT1 to methylated DNA. Nature, 2007, 450(7171): 908-912.
|
42. |
Jacob V, Chernyavskaya Y, Chen X, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development, 2015, 142(3): 510-521.
|
43. |
Wang S, Zhang C, Hasson D, et al. Epigenetic compensation promotes liver regeneration. Dev Cell, 2019, 50(1): 43-56.
|
44. |
Walter M, Teissandier A, Pérez-Palacios R, et al. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. Elife, 2016, 5: pii: e11418.
|
45. |
Sun X, Chuang JC, Kanchwala M, et al. Suppression of the SWI/SNF component arid1a promotes mammalian regeneration. Cell Stem Cell, 2016, 18(4): 456-466.
|