1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin, 2019, 69(1): 7-34.
|
2. |
Kumar V, Abbas AK, Aster JC, et al. Robbins basic pathology. 10th. Amsterdam, the Netherlands: Elsevier, 2018: 935.
|
3. |
Du L, Wang-Gillam A. Trends in neoadjuvant approaches in pancreatic cancer. J Natl Compr Canc Netw, 2017, 15(8): 1070-1077.
|
4. |
Apte MV, Xu Z, Pothula S, et al. Pancreatic cancer: the microenvironment needs attention too! Pancreatology, 2015, 15(4 Suppl): S32-S38.
|
5. |
Schnittert J, Bansal R, Prakash J. Targeting pancreatic stellate cells in cancer. Trends Cancer, 2019, 5(2): 128-142.
|
6. |
Apte MV, Park S, Phillips PA, et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas, 2004, 29(3): 179-187.
|
7. |
崔立华, 李彩霞, 卓玉珍, 等. 胰腺星状细胞在胰腺导管腺癌中的作用. 中国中西医结合外科杂志, 2018, 24(4): 516-518.
|
8. |
Watari N, Hotta Y, Mabuchi Y. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anat Jpn, 1982, 58(4-6): 837-858.
|
9. |
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch, 2017, 469(9): 1039-1050.
|
10. |
Xue R, Jia K, Wang J, et al. A rising star in pancreatic diseases: pancreatic stellate cells. Front Physiol, 2018, 9: 754.
|
11. |
Zhang Z, Zhao S, Yao Z, et al. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol, 2017, 11: 322-334.
|
12. |
Erkan M, Adler G, Apte MV, et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut, 2012, 61(2): 172-178.
|
13. |
Fu Y, Liu S, Zeng S, et al. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer, 2018, 17(1): 62.
|
14. |
Apte MV, Wilson JS, Lugea A, et al. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology, 2013, 144(6): 1210-1219.
|
15. |
Farran B, Nagaraju GP. The dynamic interactions between the stroma, pancreatic stellate cells and pancreatic tumor development: novel therapeutic targets. Cytokine Growth Factor Rev, 2019, 48: 11-23.
|
16. |
Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res, 2008, 68(3): 918-926.
|
17. |
Diab M, Azmi A, Mohammad R, et al. Pharmacotherapeutic strategies for treating pancreatic cancer: advances and challenges. Expert Opin Pharmacother, 2019, 20(5): 535-546.
|
18. |
Zhan HX, Zhou B, Cheng YG, et al. Crosstalk between stromal cells and cancer cells in pancreatic cancer: new insights into stromal biology. Cancer Lett, 2017, 392: 83-93.
|
19. |
Schneiderhan W, Diaz F, Fundel M, et al. Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci, 2007, 120(Pt 3): 512-519.
|
20. |
Yang XP, Liu SL, Xu JF, et al. Pancreatic stellate cells increase pancreatic cancer cells invasion through the hepatocyte growth factor/c-Met/survivin regulated by P53/P21. Exp Cell Res, 2017, 357(1): 79-87.
|
21. |
Karnevi E, Rosendahl AH, Hilmersson KS, et al. Impact by pancreatic stellate cells on epithelial-mesenchymal transition and pancreatic cancer cell invasion: adding a third dimension in vitro. Exp Cell Res, 2016, 346(2): 206-215.
|
22. |
Kiss K, Baghy K, Spisák S, et al. Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells. PLoS One, 2015, 10(5): e0128059.
|
23. |
Wu Q, Tian Y, Zhang J, et al. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma. Oncotarget, 2017, 8(60): 102721-102738.
|
24. |
Moir JA, Mann J, White SA. The role of pancreatic stellate cells in pancreatic cancer. Surg Oncol, 2015, 24(3): 232-238.
|
25. |
Endo S, Nakata K, Sagara A, et al. Autophagy inhibition enhances antiproliferative effect of salinomycin in pancreatic cancer cells. Pancreatology, 2017, 17(6): 990-996.
|
26. |
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab, 2016, 23(1): 27-47.
|
27. |
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol, 1927, 8(6): 519-530.
|
28. |
Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 2016, 536(7617): 479-483.
|
29. |
Horwitz AR. The origins of the molecular era of adhesion research. Nat Rev Mol Cell Biol, 2012, 13(12): 805-811.
|
30. |
Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev, 2014, 6(2): 203-213.
|
31. |
Mas-Moruno C, Fraioli R, Rechenmacher F, et al. αvβ3- or α5β1-integrin-selective peptidomimetics for surface coating. Angew Chem Int Ed Engl, 2016, 55(25): 7048-7067.
|
32. |
Schittenhelm J, Klein A, Tatagiba MS, et al. Comparing the expression of integrins αvβ3, αvβ5, αvβ6, αvβ8, fibronectin and fibrinogen in human brain metastases and their corresponding primary tumors. Int J Clin Exp Pathol, 2013, 6(12): 2719-2732.
|
33. |
Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol, 2012, 3: 344.
|
34. |
Ulmasov B, Neuschwander-Tetri BA, Lai J, et al. Inhibitors of Arg-Gly-Asp-binding integrins reduce development of pancreatic fibrosis in mice. Cell Mol Gastroenterol Hepatol, 2016, 2(4): 499-518.
|
35. |
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal, 2019, 12(570): eaav5183.
|
36. |
戴明权, 金海晓, 严小军. 整合素 αvβ3 结构与激活及其肿瘤靶向药物的研究进展. 生物学杂志, 2018, 35(4): 81-85, 93.
|
37. |
Hosotani R, Kawaguchi M, Masui T, et al. Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas, 2002, 25(2): e30-e35.
|
38. |
Marchán S, Pérez-Torras S, Vidal A, et al. Dual effects of β3 integrin subunit expression on human pancreatic cancer models. Anal Cell Pathol (Amst), 2010, 33(5): 191-205.
|
39. |
Lei XF, Fu W, Kim-Kaneyama JR, et al. Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. J Hepatol, 2016, 64(1): 110-117.
|
40. |
Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol, 2014, 60(5): 1090-1096.
|
41. |
Zhou X, Murphy FR, Gehdu N, et al. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J Biol Chem, 2004, 279(23): 23996-24006.
|
42. |
Hersey P, Sosman J, O’Day S, et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage Ⅳ metastatic melanoma. Cancer, 2010, 116(6): 1526-1534.
|
43. |
Lombardi G, Pambuku A, Bellu L, et al. Effectiveness of antiangiogenic drugs in glioblastoma patients: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol, 2017, 111: 94-102.
|
44. |
Turaga RC, Yin L, Yang JJ, et al. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site. Nat Commun, 2016, 7: 11675.
|