1. |
李晓亚, 单保恩. 基因可变剪接在癌症发生和治疗中的研究进展. 中国肿瘤生物治疗杂志, 2019, 26(9): 1042-1048.
|
2. |
从美丽, 周蓓, 吕晓敏, 等. 大鼠酒精性肝损伤模型 RNA 可变剪切变化分析. 热带医学杂志, 2018, 18(8): 1023-1026.
|
3. |
Furney SJ, Pedersen M, Gentien D, et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov, 2013, 3(10): 1122-1129.
|
4. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
5. |
Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol, 2019, [Epub ahead of print].
|
6. |
陈秋月. 全基因组关联分析解析可变剪切丰富基因功能和调控表型变异的遗传基础. 中国作物学会. 2018 中国作物学会学术年会论文摘要集. 中国作物学会: 中国作物学会, 2018: 42.
|
7. |
Li Y, Yuan Y. Alternative RNA splicing and gastric cancer. Mutat Res, 2017, 773: 263-273.
|
8. |
邱俞. RNA 的可变剪接. 畜牧与饲料科学, 2010, 31(5): 13-15.
|
9. |
富显果. 可变剪接及其生物学意义. 国际检验医学杂志, 2012, 33(11): 1333-1336.
|
10. |
王科俊, 吕俊杰, 冯伟兴, 等. 可变剪接与疾病的生物信息学研究概况. 生命科学研究, 2011, 15(1): 86-94.
|
11. |
章天骄. 可变剪接的生物信息数据分析综述. 生物信息学, 2012, 10(1): 61-64.
|
12. |
施银, 冯晓兰, 谢李芬, 等. PI3K/AKT 信号通路在肿瘤中的研究进展. 生命的化学, 2018, 38(3): 421-426.
|
13. |
Qi L, Sun K, Zhuang Y, et al. Study on the association between PI3K/AKT/mTOR signaling pathway gene polymorphism and susceptibility to gastric cancer. J BUON, 2017, 22(6): 1488-1493.
|
14. |
Yan LX, Liu YH, Xiang JW, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol, 2016, 48(2): 471-484.
|
15. |
付彦超, 张靖, 张凯茹, 等. RNA 干扰技术靶向 P13K/AKT 信号通路抵制胃腺癌 SGC7901 细胞侵袭转移的研究. 中华实验外科杂志, 2009, 26(7): 887-889.
|
16. |
Fresno Vara JA, Casado E, de Castro J, et al. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev, 2004, 30(2): 193-204.
|
17. |
Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med, 2014, 46(6): 372-383.
|
18. |
孙海翔, 徐余超, 陈晓伟, 等. PI3K/AKT/mTOR 信号通路相关蛋白在胃癌中表达. 中国公共卫生, 2017, 33(10): 1455-1458.
|
19. |
Kanda M, Kodera Y. Molecular mechanisms of peritoneal dissemination in gastric cancer. World J Gastroenterol, 2016, 22(30): 6829-6840.
|
20. |
肖杨, 张金辉, 方法. 胃癌相关 LncRNA Gas5/miRNA 信号通路的研究进展. 分子影像学杂志, 2019, 42(2): 217-221.
|
21. |
Gautam A, Li ZR, Bepler G. RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene, 2003, 22(14): 2135-2142.
|
22. |
Qi H, Lou M, Chen Y, et al. Non-enzymatic action of RRM1 protein upregulates PTEN leading to inhibition of colorectal cancer metastasis. Tumour Biol, 2015, 36(6): 4833-4842.
|
23. |
Jordheim LP, Sève P, Trédan O, et al. The ribonucleotide reductase large subunit (RRM1) as a predictive factor in patients with cancer. Lancet Oncol, 2011, 12(7): 693-702.
|
24. |
陈泽慧, 安静, 魏玥, 等. 胃癌及其癌前病变分子信号通路的相关研究. 现代中西医结合杂志, 2018, 27(36): 4098-4101.
|
25. |
Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev, 2018, 62: 50-60.
|
26. |
Vilchez V, Turcios L, Marti F, et al. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol, 2016, 22(2): 823-832.
|
27. |
Jamieson C, Lui C, Brocardo MG, et al. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci, 2015, 128(21): 3933-3946.
|
28. |
Valls G, Codina M, Miller RK, et al. Upon Wnt stimulation, Rac1 activation requires Rac1 and Vav2 binding to p120-catenin. J Cell Sci, 2016, 129(10): 2120-2123.
|
29. |
韩亮, 张艳. 幽门螺杆菌与胃癌相关信号通路研究进展. 微生物学免疫学进展, 2019, 47(3): 81-85.
|
30. |
苏文雨, 王吉林, 房静远. AMD1 在胃癌中的表达及其与临床病理特征的关联. 胃肠病学, 2018, 23(9): 522-525.
|
31. |
Cui D, Qian R, Li Y. Circular RNA circ-CMPK1 contributes to cell proliferation of non-small cell lung cancer by elevating cyclin D1 via sponging miR-302e. Mol Genet Genomic Med, 2020, 8(2): e999.
|
32. |
Lee WB, Choi WY, Lee DH, et al. OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages. BMB Rep, 2019, 52(2): 133-138.
|
33. |
Tang J, Yang Q, Cui Q, et al. Weighted gene correlation network analysis identifies RSAD2, HERC5, and CCL8 as prognostic candidates for breast cancer. J Cell Physiol, 2020, 235(1): 394-407.
|
34. |
Xu L, Zhou R, Yuan L, et al. IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes gastric cancer growth and metastasis. Cancer Lett, 2017, 393: 76-85.
|
35. |
Gong Y, Ren J, Liu K, et al. Tumor suppressor role of miR-133a in gastric cancer by repressing IGF1R. World J Gastroenterol, 2015, 21(10): 2949-2958.
|
36. |
Inokuchi M, Murase H, Otsuki S, et al. Different clinical significance of FGFR1-4 expression between diffuse-type and intestinal-type gastric cancer. World J Surg Oncol, 2017, 15(1): 2.
|
37. |
Xie G, Ke Q, Ji YZ, et al. FGFR1 is an independent prognostic factor and can be regulated by miR-497 in gastric cancer progression. Braz J Med Biol Res, 2018, 52(1): e7816.
|
38. |
胡俊华, 王琦, 杨艳果, 等. MiR-203 通过 SNAI2 的靶向作用对胃癌细胞 SGC7901 侵袭和凋亡的影响. 武汉大学学报: 医学版, 2014, 35(6): 857-861, 888.
|
39. |
Li X, Jiang M, Chen D, et al. miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res, 2018, 37(1): 71-86.
|
40. |
Yoon C, Cho SJ, Chang KK, et al. Role of Rac1 pathway in epithelial-to-mesenchymal transition and cancer stem-like cell phenotypes in gastric adenocarcinoma. Mol Cancer Res, 2017, 15(8): 1106-1116.
|
41. |
Ji J, Feng X, Shi M, et al. Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. Int J Oncol, 2015, 46(3): 1343-1353.
|
42. |
Zandvakili I, Lin Y, Morris JC, et al. Rho GTPases: anti-or pro-neoplastic targets? Oncogene, 2017, 36(23): 3213-3222.
|
43. |
Wu YJ, Tang Y, Li ZF, et al. Expression and significance of Rac1, Pak1 and Rock1 in gastric carcinoma. Asia Pac J Clin Oncol, 2014, 10(2): e33-e39.
|
44. |
Izumi D, Ishimoto T, Miyake K, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer, 2016, 138(5): 1207-1219.
|
45. |
綦芳, 武霞, 刘颖. 高表达 CXCL12、IGF1 胃癌组织临床病理特征及预后分析. 中华普外科手术学杂志: 电子版, 2018, 12(4): 306-308.
|
46. |
Oh SC, Sohn BH, Cheong JH, et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat Commun, 2018, 9(1): 1777.
|
47. |
Park JY, Sung JY, Lee J, et al. Polarized CD163+tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer. Clin Res Hepatol Gastroenterol, 2016, 40(3): 357-365.
|
48. |
占世雄, 张顺, 张璐, 等. SMAD4 基因新突变体对胰腺导管腺癌细胞迁移能力的影响. 精准医学杂志, 2019, 34(3): 254-258.
|
49. |
Sun GL, Li Z, Wang WZ, et al. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway. J Gastroenterol, 2018, 53(6): 725-739.
|
50. |
Son BK, Kim DH, Min KW, et al. Smad4/Fascin index is highly prognostic in patients with diffuse type EBV-associated gastric cancer. Pathol Res Pract, 2018, 214(4): 475-481.
|
51. |
Umair M, Wasif N, Albalawi AM, et al. Exome sequencing revealed a novel loss-of-function variant in the GLI3 transcriptional activator 2 domain underlies nonsyndromic postaxial polydactyly. Mol Genet Genomic Med, 2019, 7(7): e00627.
|
52. |
Rodrigues MFSD, Miguita L, De Andrade NP, et al. GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma. Int J Oncol, 2018, 53(6): 2458-2472.
|
53. |
Li L, Zhang L, Zhao X, et al. Downregulation of miR-152 contributes to the progression of liver fibrosis via targeting Gli3. Exp Ther Med, 2019, 18(1): 425-434.
|
54. |
陈盈盈, 李晓琴, 刘春玲. 非小细胞肺癌组织中 GLI3 蛋白的表达变化及其意义. 山东医药, 2019, 59(18): 36-39.
|
55. |
Li L, Luo Z. Dysregulated miR-27a-3p promotes nasopharyngeal carcinoma cell proliferation and migration by targeting Mapk10. Oncol Rep, 2017, 37(5): 2679-2687.
|
56. |
Xie Y, Liu Y, Fan X, et al. MicroRNA-21 promotes progression of breast cancer via inhibition of mitogen-activated protein kinase10 (MAPK10). Biosci Rep, 2019, [Epub ahead of print].
|
57. |
Li ZW, Sun B, Gong T, et al. GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology, 2019, 156(8): 2297-2312.
|
58. |
Raymond JR Jr, Appleton KM, Pierce JY, et al. Suppression of GNAI2 message in ovarian cancer. J Ovarian Res, 2014, 7: 6.
|
59. |
Zeng Q, Lei F, Chang Y, et al. An oncogenic gene, SNRPA1, regulates PIK3R1, VEGFC, MKI67, CDK1 and other genes in colorectal cancer. Biomed Pharmacother, 2019, 117: 109076.
|
60. |
Pfarr N, Allgäuer M, Steiger K, et al. Several genotypes, one phenotype: PIK3CA/AKT1 mutation-negative hidradenoma papilliferum show genetic lesions in other components of the signalling network. Pathology, 2019, 51(4): 362-368.
|
61. |
Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer, 2019, 18(1): 71-91.
|
62. |
Zhu Y, Ke J, Gong Y, et al. A genetic variant in PIK3R1 is associated with pancreatic cancer survival in the Chinese population. Cancer Med, 2019, 8(7): 3575-3582.
|
63. |
Rothenberg KE, Scott DW, Christoforou N, et al. Vinculin force-sensitive dynamics at focal adhesions enable effective directed cell migration. Biophys J, 2018, 114(7): 1680-1694.
|
64. |
Ai J, Jin T, Yang L, et al. Vinculin and filamin-C are two potential prognostic biomarkers and therapeutic targets for prostate cancer cell migration. Oncotarget, 2017, 8(47): 82430-82436.
|