1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin, 2017, 67(1): 7-30.
|
2. |
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016, 26(1): 1-133.
|
3. |
Vriens MR, Weng J, Suh I, et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer, 2012, 118(13): 3426-3432.
|
4. |
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov, 2013, 12(11): 847-865.
|
5. |
Chen Y, Li C, Tan C, et al. Circular RNAs: a new frontier in the study of human diseases. J Med Genet, 2016, 53(6): 359-365.
|
6. |
Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature, 1979, 280(5720): 339-340.
|
7. |
Wang X, Fang L. Advances in circular RNAs and their roles in breast cancer. J Exp Clin Cancer Res, 2018, 37(1): 206.
|
8. |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.
|
9. |
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol, 2015, 12(4): 381-388.
|
10. |
Li Z, Chen Z, Hu G, et al. Roles of circular RNA in breast cancer: present and future. Am J Transl Res, 2019, 11(7): 3945-3954.
|
11. |
Ren H, Liu Z, Liu S, et al. Profile and clinical implication of circular RNAs in human papillary thyroid carcinoma. PeerJ, 2018, 6: e5363.
|
12. |
Hentze MW, Preiss T. Circular RNAs: splicing’s enigma variations. EMBO J, 2013, 32(7): 923-925.
|
13. |
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3): 256-264.
|
14. |
Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs. Mol Cell, 2017, 66(1): 9-21.e7.
|
15. |
Bolha L, Ravnik-Glavač M, Glavač D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers. Int J Genomics, 2017, 2017: 6218353.
|
16. |
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
|
17. |
Tay FC, Lim JK, Zhu H, et al. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv Drug Deliv Rev, 2015, 81: 117-127.
|
18. |
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci, 2015, 18(4): 603-610.
|
19. |
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6): 1125-1134.
|
20. |
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66.
|
21. |
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell, 2013, 51(6): 792-806.
|
22. |
Perriman R, Ares M Jr. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA, 1998, 4(9): 1047-1054.
|
23. |
Yao Y, Chen X, Yang H, et al. Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis. J Exp Clin Cancer Res, 2019, 38(1): 318.
|
24. |
Pan Y, Xu T, Liu Y, et al. Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304. Biochem Biophys Res Commun, 2019, 510(2): 334-338.
|
25. |
Cai X, Zhao Z, Dong J, et al. Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR-139-5p and regulating LMO4 expression. Cell Death Dis, 2019, 10(3): 184.
|
26. |
Liu W, Zhao J, Jin M, et al. circRAPGEF5 contributes to papillary thyroid proliferation and metastatis by regulation miR-198/FGFR1. Mol Ther Nucleic Acids, 2019, 14: 609-616.
|
27. |
Wei H, Pan L, Tao D, et al. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem Biophys Res Commun, 2018, 503(1): 56-61.
|
28. |
Wang M, Chen B, Ru Z, et al. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun, 2018, 504(1): 283-288.
|
29. |
Flores AN, McDermott N, Meunier A, et al. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol, 2014, 11(9): 499-507.
|
30. |
Shen K, Liang Q, Xu K, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type Ⅰ insulin-like growth factor receptor. Biochem Pharmacol, 2012, 84(3): 320-330.
|
31. |
Wong CC, Wong CM, Tung EK, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology, 2011, 140(1): 322-331.
|
32. |
Bi W, Huang J, Nie C, et al. CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res, 2018, 37(1): 275.
|
33. |
Lan X, Xu J, Chen C, et al. The landscape of circular RNA expression profiles in papillary thyroid carcinoma based on RNA sequencing. Cell Physiol Biochem, 2018, 47(3): 1122-1132.
|
34. |
Yang C, Wei Y, Yu L, et al. Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing. Med Sci Monit, 2019, 25: 2785-2791.
|
35. |
Peng N, Shi L, Zhang Q, et al. Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PLoS One, 2017, 12(3): e0170287.
|