1. |
吴万龙, 彭兵. 胰腺癌流行病学及危险因素. 中国普外基础与临床杂志, 2019, 26(12): 1500-1503.
|
2. |
Maisonneuve P. Epidemiology and burden of pancreatic cancer. Presse Med, 2019, 48(3 Pt 2): e113-e123.
|
3. |
Zhao CF, Gao F, Li QW, et al. The distributional characteristic and growing trend of pancreatic cancer in China. Pancreas, 2019, 48(3): 309-314.
|
4. |
Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res, 2014, 74(11): 2913-2921.
|
5. |
Pang YJ, Holmes MV, Chen ZM, et al. A review of lifestyle, metabolic risk factors, and blood-based biomarkers for early diagnosis of pancreatic ductal adenocarcinoma. J Gastroenterol Hepatol, 2019, 34(2): 330-345.
|
6. |
Wei MY, Shi S, Liang C, et al. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol Cancer, 2019, 18(1): 97.
|
7. |
Gordon-Dseagu VL, Devesa SS, Goggins M, et al. Pancreatic cancer incidence trends: evidence from the Surveillance, Epidemiology and End Results (SEER) population-based data. Int J Epidemiol, 2018, 47(2): 427-439.
|
8. |
Nagano T, Otoshi T, Hazama D, et al. Novel cancer therapy targeting microbiome. Onco Targets Ther, 2019, 12: 3619-3624.
|
9. |
Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol, 2018, 15(11): 671-682.
|
10. |
Meng C, Bai C, Brown TD, et al. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics, 2018, 16(1): 33-49.
|
11. |
Karpiński TM. The microbiota and pancreatic cancer. Gastroenterol Clin North Am, 2019, 48(3): 447-464.
|
12. |
Miller DP, Wang Q, Weinberg A, et al. Transcriptome analysis of Porphyromonas gingivalis and Acinetobacter baumannii in polymicrobial communities. Mol Oral Microbiol, 2018, 33(5): 364-377.
|
13. |
Karpinski TM. Role of oral microbiota in cancer development. Microorganisms, 2019, 7(1): 1-14.
|
14. |
Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 2018, 67(1): 120-127.
|
15. |
Damgaard C, Danielsen AK, Enevold C2, et al. Porphyromonas gingivalis in saliva associates with chronic and aggressive periodontitis. J Oral Microbiol, 2019, 11(1): 1653123.
|
16. |
Lee J, Roberts JS, Atanasova KR, et al. A novel kinase function of a nucleoside-diphosphate-kinase homologue in Porphyromonas gingivalis is critical in subversion of host cell apoptosis by targeting heat-shock protein 27. Cell Microbiol, 2018, 20(5): e12825.
|
17. |
Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol, 2019, 11(1): 1563410.
|
18. |
Binder Gallimidi A, Fischman S, Revach B, et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget, 2015, 6(26): 22613-22623.
|
19. |
Carmi Y, Dotan S, Rider P, et al. The role of IL-1β in the early tumor cell-induced angiogenic response. J Immunol, 2013, 190(7): 3500-3509.
|
20. |
Mao S, Park Y, Hasegawa Y, et al. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol, 2007, 9(8): 1997-2007.
|
21. |
Yao L, Jermanus C, Barbetta B, et al. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol, 2010, 25(2): 89-101.
|
22. |
Inaba H, Sugita H, Kuboniwa M, et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol, 2014, 16(1): 131-145.
|
23. |
Obradović D, Gašperšič R, Caserman S, et al. A cytolethal distending toxin variant from Aggregatibacter actinomycetemcomitans with an aberrant CdtB that lacks the conserved catalytic histidine 160. PLoS One, 2016, 11(7): e0159231.
|
24. |
Teng YT, Zhang X. Apoptotic activity and sub-cellular localization of a T4SS-associated CagE-homologue in Actinobacillus actinomycetemcomitans. Microb Pathog, 2005, 38(2-3): 125-132.
|
25. |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe, 2013, 14(2): 195-206.
|
26. |
Fardini Y, Wang X, Témoin S, et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol, 2011, 82(6): 1468-1480.
|
27. |
Manson McGuire A, Cochrane K, Griggs AD, et al. Evolution of invasion in a diverse set of Fusobacterium species. mBio, 2014, 5(6): e01864.
|
28. |
Park SR, Kim DJ, Han SH, et al. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect Immun, 2014, 82(5): 1914-1920.
|
29. |
Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology, 2017, 152(4): 851-866.
|
30. |
Uitto VJ, Baillie D, Wu Q, et al. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect Immun, 2005, 73(2): 1171-1179.
|
31. |
Mitsuhashi K, Nosho K, Sukawa Y, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget, 2015, 6(9): 7209-7220.
|
32. |
Grimmig T, Moench R, Kreckel J, et al. Toll like receptor 2, 4, and 9 signaling promotes autoregulative tumor cell growth and VEGF/PDGF expression in human pancreatic cancer. Int J Mol Sci, 2016, 17(12). pii: E2060. PMID: 27941651.
|
33. |
Jiaqi H, Ulrika Z, Göran H, et al. Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: A nested case-control study. Int J Cancer, 2017, 140(8): 1727-1735.
|
34. |
Lin SH, He YT, Lan TT. Su2010 the association between peptic ulcer with or without Helicobacter pylori infection and colorectal cancer—A population-based matched case-control study in Taiwan. Gastroenterology, 2015, 148(4): S-574.
|
35. |
Chen XZ, Wang R, Chen HN, et al. Cytotoxin-associated gene A-negative strains of Helicobacter pylori as a potential risk factor of pancreatic cancer: A meta-analysis based on nested case-control studies. Pancreas, 2015, 44(8): 1340-13444.
|
36. |
Hirabayashi M, Inoue M, Sawada N, et al. Helicobacter pylori infection, atrophic gastritis, and risk of pancreatic cancer: A population-based cohort study in a large Japanese population: the JPHC Study. Sci Rep, 2019, 9(1): 6099.
|
37. |
Mei QX, Huang CL, Luo SZ, et al. Characterization of the duodenal bacterial microbiota in patients with pancreatic head cancer vs. healthy controls. Pancreatology, 2018, 18(4): 438-445.
|
38. |
Knorr J, Ricci V, Hatakeyama M, et al. Classification of Helicobacter pylori virulence factors: Is CagA a toxin or not? Trends Microbiol, 2019, 27(9): 731-738.
|
39. |
Stein M, Bagnoli F, Halenbeck R, et al. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol, 2002, 43(4): 971-980.
|
40. |
Rabelo-Gonçalves EM, Roesler BM, Zeitune JM. Extragastric manifestations of Helicobacter pylori infection: Possible role of bacterium in liver and pancreas diseases. World J Hepatol, 2015, 7(30): 2968-2979.
|
41. |
Ramos-Alvarez I, Lee L, Jensen RT. Cyclic AMP-dependent protein kinase A and EPAC mediate VIP and secretin stimulation of PAK4 and activation of Na+, K+-ATPase in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol, 2019, 316(2): G263-G277.
|
42. |
Nagy TA, Frey MR, Yan F, et al. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. J Infect Dis, 2009, 199(5): 641-651.
|
43. |
Smith MF Jr, Novotny J, Carl VS, et al. Helicobacter pylori and toll-like receptor agonists induce syndecan-4 expression in an NF-kappaB-dependent manner. Glycobiology, 2006, 16(3): 221-229.
|
44. |
Lesina M, Kurkowski MU, Ludes K, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell, 2011, 19(4): 456-469.
|
45. |
Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov, 2018, 8(4): 403-416.
|
46. |
Mendez R, Kesh K, Arora N, et al. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis, 2019 Aug 1. pii: bgz116.
|
47. |
Ren Z, Jiang J, Xie H, et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget, 2017, 8(56): 95176-95191.
|
48. |
Pagliari D, Saviano A, Newton EE, et al. Gut microbiota—immune system crosstalk and pancreatic disorders. Mediators Inflamm, 2018, 2018: 7946431.
|
49. |
Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation, and cancer. Cancer J, 2014, 20(3): 181-189.
|
50. |
Ahuja M, Schwartz DM, Tandon M, et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab, 2017, 25(3): 635-646.
|
51. |
Capurso G, Signoretti M, Archibugi L, et al. Systematic review and meta-analysis: Small intestinal bacterial overgrowth in chronic pancreatitis. United European Gastroenterol J, 2016, 4(5): 697-705.
|
52. |
Huang H, Daniluk J, Liu Y, et al. Oncogenic K-Ras requires activation for enhanced activity. Oncogene, 2014, 33(4): 532-535.
|
53. |
Han JL, Lin HL. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J Gastroenterol, 2014, 20(47): 17737-17745.
|
54. |
Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell, 2019, 178(4): 795-806.
|
55. |
Sivan A, Corrales L, Hubert N, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264): 1084-1089.
|
56. |
Serna-Thomé G, Castro-Eguiluz D, Fuchs-Tarlovsky V, et al. Use of functional foods and oral supplements as adjuvants in cancer treatment. Rev Invest Clin, 2018, 70(3): 136-146.
|