1. |
Kennecke H, Yerushalmi R, Woods R, <italic>et al</italic>. Metastatic behavior of breast cancer subtypes. J Clin Oncol, 2010, 28(20): 3271-3277.
|
2. |
Wang CY, Wu GY, Shen MJ, <italic>et al</italic>. Comparison of distribution characteristics of metastatic bone lesions between breast and prostate carcinomas. Oncol Lett, 2013, 5(1): 391-397.
|
3. |
Charhon SA, Chapuy MC, Delvin EE, <italic>et al</italic>. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer, 1983, 51(5): 918-924.
|
4. |
Tulotta C, Lefley DV, Freeman K, <italic>et al</italic>. Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin Cancer Res, 2019, 25(9): 2769-2782.
|
5. |
Nakai Y, Okamoto K, Terashima A, <italic>et al</italic>. Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Res, 2019, 7: 1.
|
6. |
Cao Q, Chen X, Wu X, <italic>et al</italic>. Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-αVβ5 axis. J Exp Med, 2018, 215(6): 1679-1692.
|
7. |
Zhuang X, Zhang H, Li X, <italic>et al</italic>. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol, 2017, 19(10): 1274-1285.
|
8. |
Bakhtiarizadeh MR, Hosseinpour B, Shahhoseini M, <italic>et al</italic>. Weighted gene co-expression network analysis of endometriosis and identification of functional modules associated with its main hallmarks. Front Genet, 2018, 9: 453.
|
9. |
Giulietti M, Occhipinti G, Principato G, <italic>et al</italic>. Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell Oncol (Dordr), 2017, 40(2): 181-192.
|
10. |
Liang JW, Fang ZY, Huang Y, <italic>et al</italic>. Application of weighted gene co-expression network analysis to explore the key genes in Alzheimer’s disease. J Alzheimers Dis, 2018, 65(4): 1353-1364.
|
11. |
Yan C, Theodorescu D. RAL GTPases: biology and potential as therapeutic targets in cancer. Pharmacol Rev, 2018, 70(1): 1-11.
|
12. |
Chen Q, Quan C, Xie B, <italic>et al</italic>. GARNL1, a major RalGAP α subunit in skeletal muscle, regulates insulin-stimulated RalA activation and GLUT4 trafficking <italic>via</italic> interaction with 14-3-3 proteins. Cell Signal, 2014, 26(8): 1636-1648.
|
13. |
Wu Z, Owens C, Chandra N, <italic>et al</italic>. RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia, 2010, 12(12): 1003-1012.
|
14. |
Taubenberger AV. <italic>In vitro</italic> microenvironments to study breast cancer bone colonisation. Adv Drug Deliv Rev, 2014, 79-80: 135-144.
|
15. |
Luger D, Yang YA, Raviv A, <italic>et al</italic>. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects. PLoS One, 2013, 8(10): e76115.
|
16. |
Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol (Lausanne), 2019, 9: 788.
|
17. |
Groot Kormelink T, Powe DG, Kuijpers SA, <italic>et al</italic>. Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation. Oncotarget, 2014, 5(10): 3159-3167.
|
18. |
Khan MW, Keshavarzian A, Gounaris E, <italic>et al</italic>. PI3K/AKT signaling is essential for communication between tissue-infiltrating mast cells, macrophages, and epithelial cells in colitis-induced cancer. Clin Cancer Res, 2013, 19(9): 2342-2354.
|
19. |
Sloan EK, Priceman SJ, Cox BF, <italic>et al</italic>. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res, 2010, 70(18): 7042-7052.
|
20. |
Leibbrandt A, Penninger JM. RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv Exp Med Biol, 2009, 649: 100-113.
|
21. |
Binder N, Miller C, Yoshida M, <italic>et al</italic>. Def6 restrains osteoclastogenesis and inflammatory bone resorption. J Immunol, 2017, 198(9): 3436-3447.
|
22. |
Zhang Y, He W, Zhang S. Seeking for correlative genes and signaling pathways with bone metastasis from breast cancer by integrated analysis. Front Oncol, 2019, 9: 138.
|
23. |
Masannat J, Purayil HT, Zhang Y, <italic>et al</italic>. βarrestin2 mediates renal cell carcinoma tumor growth. Sci Rep, 2018, 8(1): 4879.
|
24. |
Ren W, Wang T, He X, <italic>et al</italic>. β-arrestin2 promotes 5-FU-induced apoptosis <italic>via</italic> the NF-κB pathway in colorectal cancer. Oncol Rep, 2018, 39(6): 2711-2720.
|
25. |
Sun WY, Hu SS, Wu JJ, <italic>et al</italic>. Down-regulation of β-arrestin2 promotes tumour invasion and indicates poor prognosis of hepatocellular carcinoma. Sci Rep, 2016, 6: 35609.
|
26. |
Cong L, Qiu ZY, Zhao Y, <italic>et al</italic>. Loss of β-arrestin-2 and activation of CXCR2 correlate with lymph node metastasis in non-small cell lung cancer. J Cancer, 2017, 8(14): 2785-2792.
|