1. |
Perez K, Safran H, Sikov W, et al. Complete neoadjuvant treatment for rectal cancer: The Brown University Oncology Group CONTRE Study. Am J Clin Oncol, 2017, 40(3): 283-287.
|
2. |
Rödel C, Martus P, Papadoupolos T, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol, 2005, 23(34): 8688-8696.
|
3. |
Wen B, Zhang L, Wang C, et al. Prognostic significance of clinical and pathological stages on locally advanced rectal carcinoma after neoadjuvant chemoradiotherapy. Radiat Oncol, 2015, 10: 124.
|
4. |
Park IJ, You YN, Agarwal A, et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol, 2012, 30(15): 1770-1776.
|
5. |
Maas M, Beets-Tan RG, Lambregts DM, et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol, 2011, 29(35): 4633-4640.
|
6. |
Stipa F, Chessin DB, Shia J, et al. A pathologic complete response of rectal cancer to preoperative combined-modality therapy results in improved oncological outcome compared with those who achieve no downstaging on the basis of preoperative endorectal ultrasonography. Ann Surg Oncol, 2006, 13(8): 1047-1053.
|
7. |
Appelt AL, Pløen J, Harling H, et al. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol, 2015, 16(8): 919-927.
|
8. |
Habr-Gama A, Gama-Rodrigues J, São Julião GP, et al. Local recurrence after complete clinical response and watch and wait in rectal cancer after neoadjuvant chemoradiation: impact of salvage therapy on local disease control. Int J Radiat Oncol Biol Phys, 2014, 88(4): 822-828.
|
9. |
Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res, 2017, 23(23): 7253-7262.
|
10. |
Horvat N, Veeraraghavan H, Khan M, et al. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology, 2018, 287(3): 833-843.
|
11. |
Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol, 2019, 29(3): 1211-1220.
|
12. |
Giannini V, Mazzetti S, Bertotto I, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with. Eur J Nucl Med Mol Imaging, 2019, 46(4): 878-888.
|
13. |
Bibault JE, Giraud P, Housset M, et al. Author correction: deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep, 2018, 8(1): 16914.
|
14. |
Nie K, Shi L, Chen Q, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin Cancer Res, 2016, 22(21): 5256-5264.
|
15. |
Meng Y, Zhang Y, Dong D, et al. Novel radiomic signature as a prognostic biomarker for locally advanced rectal cancer. J Magn Reson Imaging, 2018 Feb 13. doi: 10.1002/jmri.25968.
|
16. |
Lovinfosse P, Polus M, Van Daele D, et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging, 2018, 45(3): 365-375.
|
17. |
刘健博, 由屹先, 邹雨恒, 等. 数据库辅助研究: 结直肠癌新辅助治疗的应用—基于 DACCA 的华西真实世界数据报道. 中国普外基础与临床杂志, 2019, 26(12): 1467-1475.
|
18. |
刘健博, 吕炘沂, 邹雨恒, 等. 多周期新辅助化疗联合阿帕替尼对进展期直肠癌的疗效评价: 基于 DACCA 数据库的辅助研究. 中国普外基础与临床杂志, 2019, 26(6): 728-734.
|
19. |
Quinlan R. Introduction of decision trees. Machine Learning, 1986, 1: 84-100.
|
20. |
Han JW, Kamber M著; 范明, 孟小峰译. 数据挖掘: 概念与技术. 第3版. 北京: 机械工业出版社, 2008.
|
21. |
Breiman L, Friedman J, Stone CJ, et al. Classification and regression trees. New York: Chapman and Hall, 1984.
|
22. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
23. |
于瑞璇, 何欣林, 张秋露, 等. 华西DACCA的辅助研究: 单独的新辅助化疗不会影响直肠癌术后近期的肛门功能. 中国普外基础与临床杂志, 2019, 26(5): 595-601.
|
24. |
Callender GG, Das P, Rodriguez-Bigas MA, et al. Local excision after preoperative chemoradiation results in an equivalent outcome to total mesorectal excision in selected patients with T3 rectal cancer. Ann Surg Oncol, 2010, 17(2): 441-447.
|
25. |
Belluco C, De Paoli A, Canzonieri V, et al. Long-term outcome of patients with complete pathologic response after neoadjuvant chemoradiation for cT3 rectal cancer: implications for local excision surgical strategies. Ann Surg Oncol, 2011, 18(13): 3686-3693.
|
26. |
王鸣飞, 张惠茅. 结直肠癌术前 N 分期的随机森林预测模型的建立与验证. 吉林大学, 2019.
|
27. |
萨莎. 结直肠癌术前 T 分期的随机森林预测模型的建立与验证. 吉林大学, 2018.
|
28. |
陈斌, 苏一丹, 黄山. 基于 KM-SMOTE 和随机森林的不平衡数据分类. 计算机技术与发展, 2015, 25(9): 17-21.
|
29. |
吴琼, 李运田, 郑献卫. 面向非平衡训练集分类的随机森林算法优化. 工业控制计算机, 2013, 26(7): 89-90.
|
30. |
Das P, Skibber JM, et al. Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer, 2007, 109(9): 1750-1755.
|
31. |
Yoon SM, Kim DY, Kim TH, et al. Clinical parameters predicting pathologic tumor response after preoperative chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys, 2007, 69(4): 1167-1172.
|
32. |
汪晓东, 刘健博, 李立. 数据库建设第五部分•结直肠癌的肿瘤特征—模块的设计(二). 中国普外基础与临床杂志, 优先出版. 2020-03-15.
|
33. |
孟闫凯, 周纯武. 磁共振、影像组学在直肠癌新辅助放化疗疗效评估及预后中的应用. 北京协和医学院, 2018.
|