- 1. The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China;
- 2. The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China;
Citation: XU Tao, ZHANG Bo, ZHOU Wence. Research progress on the relationship between biliary flora and cholangiocarcinoma. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2021, 28(3): 404-408. doi: 10.7507/1007-9424.202006047 Copy
1. | Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol, 2018, 15(2): 95-111. |
2. | Nathan H, Pawlik TM, Wolfgang CL, et al. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis. J Gastrointest Surg, 2007, 11(11): 1488-1496. |
3. | Saha SK, Zhu AX, Fuchs CS, et al. Forty-year trends in cholangiocarcinoma incidence in the U. S. : intrahepatic disease on the rise. Oncologist, 2016, 21(5): 594-599. |
4. | Hu HJ, Mao H, Shrestha A, et al. Prognostic factors and long-term outcomes of hilar cholangiocarcinoma: a single-institution experience in China. World J Gastroenterol, 2016, 22(8): 2601-2610. |
5. | Pinto C, Giordano DM, Maroni L, et al. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1270-1278. |
6. | Lee H, Lee HK, Min SK, et al. 16S rDNA microbiome composition pattern analysis as a diagnostic biomarker for biliary tract cancer. World J Surg Oncol, 2020, 18(1): 19. |
7. | Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature, 2020, 579(7800): 567-574. |
8. | Verdier J, Luedde T, Sellge G. Biliary mucosal barrier and microbiome. Viszeralmedizin, 2015, 31(3): 156-161. |
9. | Whiteside SA, Razvi H, Dave S, et al. The microbiome of the urinary tract–a role beyond infection. Nat Rev Urol, 2015, 12(2): 81-90. |
10. | Aho VTE, Pereira PAB, Haahtela T, et al. The microbiome of the human lower airways: a next generation sequencing perspective. World Allergy Organ J, 2015, 8(1): 23. |
11. | Shen H, Ye F, Xie L, et al. Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria. Sci Rep, 2015, 5: 17450. |
12. | Sung JY, Shaffer EA, Olson ME, et al. Bacterial invasion of the biliary system by way of the portal-venous system. Hepatology, 1991, 14(2): 313-317. |
13. | Scott AJ, Khan GA. Origin of bacteria in bileduct bile. Lancet, 1967, 2(7520): 790-792. |
14. | Anderson RE, Priestley JT. Observations on the bacteriology of choledochal bile. Ann Surg, 1951, 133(4): 486-489. |
15. | Elkeles G, Mirizzi PL. A study of the bacteriology of the common bile duct in comparison with the other extrahepatic segments of the biliary tract. Ann Surg, 1942, 116(3): 360-366. |
16. | Gu XX, Zhang MP, Zhao YF, et al. Clinical and microbiological characteristics of patients with biliary disease. World J Gastroenterol, 2020, 26(14): 1638-1646. |
17. | Wu T, Zhang Z, Liu B, et al. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics, 2013, 14: 669. |
18. | Ye F, Shen H, Li Z, et al. Influence of the biliary system on biliary bacteria revealed by bacterial communities of the human biliary and upper digestive tracts. PLoS One, 2016, 11(3): e0150519. |
19. | Folseraas T, Melum E, Rausch P, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol, 2012, 57(2): 366-375. |
20. | Pereira P, Aho V, Arola J, et al. Bile microbiota in primary sclerosing cholangitis: impact on disease progression and development of biliary dysplasia. PLoS One, 2017, 12(8): e0182924. |
21. | Jiménez E, Sánchez B, Farina A, et al. Characterization of the bile and gall bladder microbiota of healthy pigs. Microbiologyopen, 2014, 3(6): 937-949. |
22. | Molinero N, Ruiz L, Milani C, et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome, 2019, 7(1): 100. |
23. | Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology, 2011, 54(1): 173-184. |
24. | Dyson JK, Beuers U, Jones DEJ, et al. Primary sclerosing cholangitis. Lancet, 2018, 391(10139): 2547-2559. |
25. | Karlsen TH, Folseraas T, Thorburn D, et al. Primary sclerosing cholangitis–a comprehensive review. J Hepatol, 2017, 67(6): 1298-1323. |
26. | Liwinski T, Zenouzi R, John C, et al. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut, 2020, 69(4): 665-672. |
27. | Chng KR, Chan SH, Ng AHQ, et al. Tissue microbiome profiling identifies an enrichment of specific enteric bacteria in Opisthorchis viverrini associated cholangiocarcinoma. EBioMedicine, 2016, 8: 195-202. |
28. | Avilés-Jiménez F, Guitron A, Segura-López F, et al. Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin Microbiol Infect, 2016, 22(2): 178. e11-178. e22. |
29. | Maki T. Pathogenesis of calcium bilirubinate gallstone: role of E. coli, beta-glucuronidase and coagulation by inorganic ions, polyelectrolytes and agitation. Ann Surg, 1966, 164(1): 90-100. |
30. | Kamisawa T, Egawa N, Nakajima H, et al. Origin of the long common channel based on pancreatographic findings in pancreaticobiliary maljunction. Dig Liver Dis, 2005, 37(5): 363-367. |
31. | Sugawara H, Yasoshima M, Katayanagi K, et al. Relationship between interleukin-6 and proliferation and differentiation in cholangiocarcinoma. Histopathology, 1998, 33(2): 145-153. |
32. | Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology, 2010, 51(3): 881-890. |
33. | Kobayashi S, Werneburg NW, Bronk SF, et al. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology, 2005, 128(7): 2054-2065. |
34. | Zabron A, Edwards RJ, Khan SA. The challenge of cholangiocarcinoma: dissecting the molecular mechanisms of an insidious cancer. Dis Model Mech, 2013, 6(2): 281-292. |
35. | Frampton G, Invernizzi P, Bernuzzi F, et al. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism. Gut, 2012, 61(2): 268-277. |
36. | Tadlock L, Patel T. Involvement of p38 mitogen-activated protein kinase signaling in transformed growth of a cholangiocarcinoma cell line. Hepatology, 2001, 33(1): 43-51. |
37. | Brito AF, Abrantes AM, Encarnação JC, et al. Cholangiocarcinoma: from molecular biology to treatment. Med Oncol, 2015, 32(11): 245. |
38. | Komori J, Marusawa H, Machimoto T, et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology, 2008, 47(3): 888-896. |
39. | You Z, Bei L, Cheng LP, et al. Expression of COX-2 and VEGF-C in cholangiocarcinomas at different clinical and pathological stages. Genet Mol Res, 2015, 14(2): 6239-6246. |
40. | Zhang Z, Lai GH, Sirica AE. Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. Hepatology, 2004, 39(4): 1028-1037. |
41. | Han C, Leng J, Demetris AJ, et al. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res, 2004, 64(4): 1369-1376. |
42. | Spirlì C, Fabris L, Duner E, et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology, 2003, 124(3): 737-753. |
43. | Jaiswal M, LaRusso NF, Shapiro RA, et al. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology, 2001, 120(1): 190-199. |
44. | Wu WR, Zhang R, Shi XD, et al. Notch1 is overexpressed in human intrahepatic cholangiocarcinoma and is associated with its proliferation, invasiveness and sensitivity to 5-fluorouracil in vitro. Oncol Rep, 2014, 31(6): 2515-2524. |
45. | Yoon HA, Noh MH, Kim BG, et al. Clinicopathological significance of altered Notch signaling in extrahepatic cholangiocarcinoma and gallbladder carcinoma. World J Gastroenterol, 2011, 17(35): 4023-4030. |
46. | Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology, 2005, 128(5): 1354-1368. |
47. | Boulter L, Guest RV, Kendall TJ, et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest, 2015, 125(3): 1269-1285. |
48. | Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 2001, 345(11): 784-789. |
49. | Chen B, Fu SW, Lu L, et al. A preliminary study of biliary microbiota in patients with bile duct stones or distal cholangiocarcinoma. Biomed Res Int, 2019, 2019: 1092563. |
50. | Segura-López FK, Avilés-Jiménez F, Güitrón-Cantú A, et al. Infection with Helicobacter bilis but not Helicobacter hepaticus was associated with extrahepatic cholangiocarcinoma. Helicobacter, 2015, 20(3): 223-230. |
51. | Murphy G, Michel A, Taylor PR, et al. Association of seropositivity to Helicobacter species and biliary tract cancer in the ATBC study. Hepatology, 2014, 60(6): 1963-1971. |
52. | Zhou D, Wang JD, Weng MZ, et al. Infections of Helicobacter spp. in the biliary system are associated with biliary tract cancer: a meta-analysis. Eur J Gastroenterol Hepatol, 2013, 25(4): 447-454. |
53. | Shimoyama T, Takahashi R, Abe D, et al. Serological analysis of Helicobacter hepaticus infection in patients with biliary and pancreatic diseases. J Gastroenterol Hepatol, 2010, 25 Suppl 1: S86-S89. |
54. | Boonyanugomol W, Chomvarin C, Sripa B, et al. Molecular analysis of Helicobacter pylori virulent-associated genes in hepatobiliary patients. HPB (Oxford), 2012, 14(11): 754-763. |
55. | Boonyanugomol W, Chomvarin C, Song JY, et al. Effects of Helicobacter pylori γ-glutamyltranspeptidase on apoptosis and inflammation in human biliary cells. Dig Dis Sci, 2012, 57(10): 2615-2624. |
56. | Takayama S, Takahashi H, Matsuo Y, et al. Effect of Helicobacter bilis infection on human bile duct cancer cells. Dig Dis Sci, 2010, 55(7): 1905-1910. |
57. | Scanu T, Spaapen RM, Bakker JM, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe, 2015, 17(6): 763-774. |
58. | Zitvogel L, Daillère R, Roberti MP, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol, 2017, 15(8): 465-478. |
59. | Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535(7610): 75-84. |
60. | Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264): 1079-1084. |
61. | Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264): 1084-1089. |
62. | Nagino M, Ebata T, Yokoyama Y, et al. Evolution of surgical treatment for perihilar cholangiocarcinoma: a single-center 34-year review of 574 consecutive resections. Ann Surg, 2013, 258(1): 129-140. |
63. | Chen X, Sun S, Yan X, et al. Predictive factors and microbial spectrum for infectious complications after hepatectomy with cholangiojejunostomy in perihilar cholangiocarcinoma. Surg Infect (Larchmt), 2020, 21(3): 275-283. |
64. | Sugawara G, Nagino M, Nishio H, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg, 2006, 244(5): 706-714. |
65. | Kanazawa H, Nagino M, Kamiya S, et al. Synbiotics reduce postoperative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbecks Arch Surg, 2005, 390(2): 104-113. |
66. | Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome, 2018, 6(1): 92. |
67. | Lehouritis P, Cummins J, Stanton M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep, 2015, 5: 14554. |
68. | Picardo SL, Coburn B, Hansen AR. The microbiome and cancer for clinicians. Crit Rev Oncol Hematol, 2019, 141: 1-12. |
69. | Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell, 2019, 178(4): 795-806. e12. |
- 1. Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol, 2018, 15(2): 95-111.
- 2. Nathan H, Pawlik TM, Wolfgang CL, et al. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis. J Gastrointest Surg, 2007, 11(11): 1488-1496.
- 3. Saha SK, Zhu AX, Fuchs CS, et al. Forty-year trends in cholangiocarcinoma incidence in the U. S. : intrahepatic disease on the rise. Oncologist, 2016, 21(5): 594-599.
- 4. Hu HJ, Mao H, Shrestha A, et al. Prognostic factors and long-term outcomes of hilar cholangiocarcinoma: a single-institution experience in China. World J Gastroenterol, 2016, 22(8): 2601-2610.
- 5. Pinto C, Giordano DM, Maroni L, et al. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1270-1278.
- 6. Lee H, Lee HK, Min SK, et al. 16S rDNA microbiome composition pattern analysis as a diagnostic biomarker for biliary tract cancer. World J Surg Oncol, 2020, 18(1): 19.
- 7. Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature, 2020, 579(7800): 567-574.
- 8. Verdier J, Luedde T, Sellge G. Biliary mucosal barrier and microbiome. Viszeralmedizin, 2015, 31(3): 156-161.
- 9. Whiteside SA, Razvi H, Dave S, et al. The microbiome of the urinary tract–a role beyond infection. Nat Rev Urol, 2015, 12(2): 81-90.
- 10. Aho VTE, Pereira PAB, Haahtela T, et al. The microbiome of the human lower airways: a next generation sequencing perspective. World Allergy Organ J, 2015, 8(1): 23.
- 11. Shen H, Ye F, Xie L, et al. Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria. Sci Rep, 2015, 5: 17450.
- 12. Sung JY, Shaffer EA, Olson ME, et al. Bacterial invasion of the biliary system by way of the portal-venous system. Hepatology, 1991, 14(2): 313-317.
- 13. Scott AJ, Khan GA. Origin of bacteria in bileduct bile. Lancet, 1967, 2(7520): 790-792.
- 14. Anderson RE, Priestley JT. Observations on the bacteriology of choledochal bile. Ann Surg, 1951, 133(4): 486-489.
- 15. Elkeles G, Mirizzi PL. A study of the bacteriology of the common bile duct in comparison with the other extrahepatic segments of the biliary tract. Ann Surg, 1942, 116(3): 360-366.
- 16. Gu XX, Zhang MP, Zhao YF, et al. Clinical and microbiological characteristics of patients with biliary disease. World J Gastroenterol, 2020, 26(14): 1638-1646.
- 17. Wu T, Zhang Z, Liu B, et al. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics, 2013, 14: 669.
- 18. Ye F, Shen H, Li Z, et al. Influence of the biliary system on biliary bacteria revealed by bacterial communities of the human biliary and upper digestive tracts. PLoS One, 2016, 11(3): e0150519.
- 19. Folseraas T, Melum E, Rausch P, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol, 2012, 57(2): 366-375.
- 20. Pereira P, Aho V, Arola J, et al. Bile microbiota in primary sclerosing cholangitis: impact on disease progression and development of biliary dysplasia. PLoS One, 2017, 12(8): e0182924.
- 21. Jiménez E, Sánchez B, Farina A, et al. Characterization of the bile and gall bladder microbiota of healthy pigs. Microbiologyopen, 2014, 3(6): 937-949.
- 22. Molinero N, Ruiz L, Milani C, et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome, 2019, 7(1): 100.
- 23. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology, 2011, 54(1): 173-184.
- 24. Dyson JK, Beuers U, Jones DEJ, et al. Primary sclerosing cholangitis. Lancet, 2018, 391(10139): 2547-2559.
- 25. Karlsen TH, Folseraas T, Thorburn D, et al. Primary sclerosing cholangitis–a comprehensive review. J Hepatol, 2017, 67(6): 1298-1323.
- 26. Liwinski T, Zenouzi R, John C, et al. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut, 2020, 69(4): 665-672.
- 27. Chng KR, Chan SH, Ng AHQ, et al. Tissue microbiome profiling identifies an enrichment of specific enteric bacteria in Opisthorchis viverrini associated cholangiocarcinoma. EBioMedicine, 2016, 8: 195-202.
- 28. Avilés-Jiménez F, Guitron A, Segura-López F, et al. Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin Microbiol Infect, 2016, 22(2): 178. e11-178. e22.
- 29. Maki T. Pathogenesis of calcium bilirubinate gallstone: role of E. coli, beta-glucuronidase and coagulation by inorganic ions, polyelectrolytes and agitation. Ann Surg, 1966, 164(1): 90-100.
- 30. Kamisawa T, Egawa N, Nakajima H, et al. Origin of the long common channel based on pancreatographic findings in pancreaticobiliary maljunction. Dig Liver Dis, 2005, 37(5): 363-367.
- 31. Sugawara H, Yasoshima M, Katayanagi K, et al. Relationship between interleukin-6 and proliferation and differentiation in cholangiocarcinoma. Histopathology, 1998, 33(2): 145-153.
- 32. Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology, 2010, 51(3): 881-890.
- 33. Kobayashi S, Werneburg NW, Bronk SF, et al. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology, 2005, 128(7): 2054-2065.
- 34. Zabron A, Edwards RJ, Khan SA. The challenge of cholangiocarcinoma: dissecting the molecular mechanisms of an insidious cancer. Dis Model Mech, 2013, 6(2): 281-292.
- 35. Frampton G, Invernizzi P, Bernuzzi F, et al. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism. Gut, 2012, 61(2): 268-277.
- 36. Tadlock L, Patel T. Involvement of p38 mitogen-activated protein kinase signaling in transformed growth of a cholangiocarcinoma cell line. Hepatology, 2001, 33(1): 43-51.
- 37. Brito AF, Abrantes AM, Encarnação JC, et al. Cholangiocarcinoma: from molecular biology to treatment. Med Oncol, 2015, 32(11): 245.
- 38. Komori J, Marusawa H, Machimoto T, et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology, 2008, 47(3): 888-896.
- 39. You Z, Bei L, Cheng LP, et al. Expression of COX-2 and VEGF-C in cholangiocarcinomas at different clinical and pathological stages. Genet Mol Res, 2015, 14(2): 6239-6246.
- 40. Zhang Z, Lai GH, Sirica AE. Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. Hepatology, 2004, 39(4): 1028-1037.
- 41. Han C, Leng J, Demetris AJ, et al. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res, 2004, 64(4): 1369-1376.
- 42. Spirlì C, Fabris L, Duner E, et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology, 2003, 124(3): 737-753.
- 43. Jaiswal M, LaRusso NF, Shapiro RA, et al. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology, 2001, 120(1): 190-199.
- 44. Wu WR, Zhang R, Shi XD, et al. Notch1 is overexpressed in human intrahepatic cholangiocarcinoma and is associated with its proliferation, invasiveness and sensitivity to 5-fluorouracil in vitro. Oncol Rep, 2014, 31(6): 2515-2524.
- 45. Yoon HA, Noh MH, Kim BG, et al. Clinicopathological significance of altered Notch signaling in extrahepatic cholangiocarcinoma and gallbladder carcinoma. World J Gastroenterol, 2011, 17(35): 4023-4030.
- 46. Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology, 2005, 128(5): 1354-1368.
- 47. Boulter L, Guest RV, Kendall TJ, et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest, 2015, 125(3): 1269-1285.
- 48. Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 2001, 345(11): 784-789.
- 49. Chen B, Fu SW, Lu L, et al. A preliminary study of biliary microbiota in patients with bile duct stones or distal cholangiocarcinoma. Biomed Res Int, 2019, 2019: 1092563.
- 50. Segura-López FK, Avilés-Jiménez F, Güitrón-Cantú A, et al. Infection with Helicobacter bilis but not Helicobacter hepaticus was associated with extrahepatic cholangiocarcinoma. Helicobacter, 2015, 20(3): 223-230.
- 51. Murphy G, Michel A, Taylor PR, et al. Association of seropositivity to Helicobacter species and biliary tract cancer in the ATBC study. Hepatology, 2014, 60(6): 1963-1971.
- 52. Zhou D, Wang JD, Weng MZ, et al. Infections of Helicobacter spp. in the biliary system are associated with biliary tract cancer: a meta-analysis. Eur J Gastroenterol Hepatol, 2013, 25(4): 447-454.
- 53. Shimoyama T, Takahashi R, Abe D, et al. Serological analysis of Helicobacter hepaticus infection in patients with biliary and pancreatic diseases. J Gastroenterol Hepatol, 2010, 25 Suppl 1: S86-S89.
- 54. Boonyanugomol W, Chomvarin C, Sripa B, et al. Molecular analysis of Helicobacter pylori virulent-associated genes in hepatobiliary patients. HPB (Oxford), 2012, 14(11): 754-763.
- 55. Boonyanugomol W, Chomvarin C, Song JY, et al. Effects of Helicobacter pylori γ-glutamyltranspeptidase on apoptosis and inflammation in human biliary cells. Dig Dis Sci, 2012, 57(10): 2615-2624.
- 56. Takayama S, Takahashi H, Matsuo Y, et al. Effect of Helicobacter bilis infection on human bile duct cancer cells. Dig Dis Sci, 2010, 55(7): 1905-1910.
- 57. Scanu T, Spaapen RM, Bakker JM, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe, 2015, 17(6): 763-774.
- 58. Zitvogel L, Daillère R, Roberti MP, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol, 2017, 15(8): 465-478.
- 59. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535(7610): 75-84.
- 60. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264): 1079-1084.
- 61. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264): 1084-1089.
- 62. Nagino M, Ebata T, Yokoyama Y, et al. Evolution of surgical treatment for perihilar cholangiocarcinoma: a single-center 34-year review of 574 consecutive resections. Ann Surg, 2013, 258(1): 129-140.
- 63. Chen X, Sun S, Yan X, et al. Predictive factors and microbial spectrum for infectious complications after hepatectomy with cholangiojejunostomy in perihilar cholangiocarcinoma. Surg Infect (Larchmt), 2020, 21(3): 275-283.
- 64. Sugawara G, Nagino M, Nishio H, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg, 2006, 244(5): 706-714.
- 65. Kanazawa H, Nagino M, Kamiya S, et al. Synbiotics reduce postoperative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbecks Arch Surg, 2005, 390(2): 104-113.
- 66. Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome, 2018, 6(1): 92.
- 67. Lehouritis P, Cummins J, Stanton M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep, 2015, 5: 14554.
- 68. Picardo SL, Coburn B, Hansen AR. The microbiome and cancer for clinicians. Crit Rev Oncol Hematol, 2019, 141: 1-12.
- 69. Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell, 2019, 178(4): 795-806. e12.