1. |
Lal, BK. Venous ulcers of the lower extremity: definition, epidemiology, economic and social burden. Semin Vasc Surg, 2015, 28(1): 3-5.
|
2. |
中华医学会外科学分会血管外科学组, 中国医师协会血管外科医师分会, 中国医疗保健国际交流促进会血管外科分会, 等. 中国慢性静脉疾病诊断与治疗指南. 中华医学杂志, 2019, 99(39): 3047-3061.
|
3. |
Stone RC, Stojadinovic O, Rosa AM, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci Transl Med, 2017, 9(371): eaaf8611.
|
4. |
Guest JF, Fuller GW, Vowden P. Venous leg ulcer management in clinical practice in the UK: costs and outcomes. Int Wound J, 2018, 15(1): 29-37.
|
5. |
Vivas A, Lev-Tov H, Kirsner RS. Venous leg ulcers. Ann Intern Med, 2016, 165(3): ITC17-ITC32.
|
6. |
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data setsupdate. Nucleic Acids Res, 2013, 41(Database issue): D991-D995.
|
7. |
Gautier L, Cope L, Bolstad BM, et al. Affy-analysis of affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3): 307-315.
|
8. |
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA sequencing and microarray studies. Nucleic Acids Res, 2015, 43(7): e477.
|
9. |
Ginestet C. Ggplot2: elegant graphics for data analysis. J R Stat Soc Stat, 2011, 174(1): 245.
|
10. |
Yu G, Wang LG, Han Y, et al. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omics, 2012, 16(5): 284-287.
|
11. |
Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 2004, 32(Database issue): D258-D261.
|
12. |
Kanehisa M. The KEGG database. Novartis Found Symp, 2002, 247: 91-101, 101-103, 119-128, 244-252.
|
13. |
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019, 47(D1): D607-D613.
|
14. |
Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2. 8: new features for data integration and network visualization. Bioinformatics, 2011, 27(3): 431-432.
|
15. |
Chin CH, Chen SH, Wu HH, et al. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biol, 2014, 8 Suppl 4(Suppl 4): S11.
|
16. |
Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care (New Rochelle), 2014, 3(8): 511-529.
|
17. |
Liu YC, Margolis DJ, Isseroff RR. Does inflammation have a role in the pathogenesis of venous ulcers: A critical review of the evidence. J Invest Dermatol, 2011, 131(4): 818-827.
|
18. |
Blumberg SN, Maggi J, Melamed J, et al. A histopathologic basis for surgical debridement to promote healing of venous ulcers. J Am Coll Surg, 2012, 215(6): 751-757.
|
19. |
Filkor K, Németh T, Nagy I, et al. The expression of inflammatory cytokines, TAM tyrosine kinase receptors and their ligands is upregulated in venous leg ulcer patients: a novel insight into chronic wound immunity. Int Wound J, 2016, 13(4): 554-562.
|
20. |
Crawford JM, Lal BK, Durán, WN, et al. Pathophysiology of venous ulceration. J Vasc Surg Venous Lymphati Disord, 2017, 5(4): 596-605.
|
21. |
Chin JS, Madden L, Chew SY, et al. Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Adv Drug Deliv Rev, 2019, 149-150: 2-18.
|
22. |
Tian Y, Li H, Gao Y, et al. Quantitative proteomic characterization of lung tissue in idiopathic pulmonary fibrosis. Clin Proteomics, 2019, 16: 6.
|
23. |
Simka M, Rybak Z. Hypothetical molecular mechanisms by which local iron overload facilitates the development of venous leg ulcers and multiple sclerosis lesions. Med Hypotheses, 2008, 71(2): 293-297.
|
24. |
Okabe Y, Medzhitov R. Tissue biology perspective on macrophages. Nat Immunol, 2015, 17(1): 9-17.
|
25. |
Cairo G, Recalcati S, Mantovani A, et al. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol, 2011, 32(6): 241-247.
|
26. |
Wilkinson HN, Roberts ER, Stafford AR, et al. Tissue iron promotes wound repair via M2 macrophage polarisation and the chemokines CCL17 and CCL22. Am J Pathol, 2019, 189(11): 2196-2208.
|
27. |
Moghaddam AS, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization and function in health and disease. J Cell Physiol, 2018, 233(9): 6425-6440.
|
28. |
Yang HL, Tsai YC, Korivi M, et al. Lucidone promotes the cutaneous wound healing process via activation of the PI3K/AKT, Wnt/β-catenin and NF-κB signaling pathways. Biochim Biophys Acta Mol Cell Res, 2017, 1864(1): 151-168.
|
29. |
Weinheimer-Haus EM, Mirza RE, Koh TJ. Nod-like receptor protein-3 inflammasome plays an important role during early stages of wound healing. PLoS One, 2015, 10(3): e0119106.
|
30. |
Pukstad BS, Ryan L, Flo T H, et al. Non-healing is associated with persistent stimulation of the innate immune response in chronic venous leg ulcers. J Dermatol Sci, 2010, 59(2): 115-122.
|
31. |
Chen L, Guo S, Ranzer MJ, et al. Toll-like receptor 4 has an essential role in early skin wound healing. J Invest Dermatol, 2013, 133(1): 258-267.
|
32. |
Weyrich AS, Zimmerman GA. Platelets: signaling cells in the immune continuum. Trends Immunol, 2004, 25(9): 289-495.
|
33. |
Chiraz A, Fatma G, Dhafer L. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci, 2018, 19(6): 1801.
|
34. |
Naik S, Larsen SB, Gomez NC, et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature, 2017, 550(7677): 475-480.
|
35. |
Romagnani P, Lasagni L, Annunziato F, et al. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol, 2004, 25(4): 201-209.
|
36. |
Rennekampff HO, Hansbrough JF, Kiessig V, et al. Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res, 2000, 93(1): 41-54.
|
37. |
Schultz G, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen, 2009, 17(2): 153-162.
|
38. |
Krishna NA, Pennington HM, Coppola CD, et al. Connecting local and global sensitivities in a mathematical model for wound healing. Bull Math Biol, 2015, 77(12): 2294-2324.
|
39. |
Tolg C, Liu M, Cousteils K, et al. Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization. J Biol Chem, 2020, 295(16): 5427-5448.
|
40. |
Raffetto JD. Pathophysiology of wound healing and alterations in venous leg ulcers-review. Phlebology, 2016, 31(1 Suppl): 56-62.
|
41. |
Liew PX. The neutrophil's role during health and disease. Physiol Rev, 2019, 99(2): 1223-1248.
|
42. |
Mirastschijski U, Haaksma CJ, Tomasek JJ, et al. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res, 2004, 299(2): 265-275.
|
43. |
Prat C, Haas PJ, Bestebroer J, et al. A homolog of formyl peptide receptor-like 1 (FPRL1) inhibitor from Staphylococcus aureus (FPRL1 inhibitory protein) that inhibits FPRL1 and FPR. J Immunol, 2009, 183(10): 6569-6578.
|