1. |
Zhen SH, Cheng M, Tao YB, et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front Oncol, 2020, 10: 680.
|
2. |
Calderaro J, Ziol M, Paradis V, et al. Molecular and histological correlations in liver cancer. J Hepatol, 2019, 71(3): 616-630.
|
3. |
Yasaka K, Akai H, Abe O, et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology, 2018, 286(3): 887-896.
|
4. |
Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol, 2020, 30(1): 558-570.
|
5. |
Okada T, Linguraru MG, Hori M, et al. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med Image Anal, 2015, 26(1): 1-18.
|
6. |
Tong T, Wolz R, Wang Z, et al. Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal, 2015, 23(1): 92-104.
|
7. |
Wang CL, Örjan S. Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors//Goksel O. Beijing: Proceedings of the VISCERAL Organ Segmentation and Landmark Detection Benchmark at the 2014 IEEE International Symposium on Biomedical Imaging (ISBI), 2014.
|
8. |
Chartrand G, Cresson T, Chav R, et al. Liver segmentation on CT and MR using laplacian mesh optimization. IEEE Trans Biomed Eng, 2017, 64(9): 2110-2121.
|
9. |
Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part Ⅰ: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol, 2019, 29(7): 3338-3347.
|
10. |
Fu Y, Mazur TR, Wu X, et al. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med Phys, 2018, 45(11): 5129-5137.
|
11. |
Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part Ⅱ: convolutional neural network interpretation using radiologic imaging features. Eur Radiol, 2019, 29(7): 3348-3357.
|
12. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
13. |
Jiang HY, Liu XJ, Chen J, et al. Man or machine? Prospective comparison of the version 2018 EASL, LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma. Cancer Imaging, 2019, 19(1): 84.
|
14. |
Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019, 70(6): 1133-1144.
|
15. |
Garcia-Vidal C, Sanjuan G, Puerta-Alcalde P, et al. Artificial intelligence to support clinical decision-making processes. EBioMedicine, 2019, 46: 27-29.
|
16. |
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314.
|
17. |
Burström G, Buerger C, Hoppenbrouwers J, et al. Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine, 2019, 31(1): 147-154.
|
18. |
Hu M, Hu H, Cai W, et al. The safety and feasibility of three-dimensional visualization technology assisted right posterior lobe allied with part of Ⅴ and Ⅷ sectionectomy for right hepatic malignancy therapy. J Laparoendosc Adv Surg Tech A, 2018, 28(5): 586-594.
|
19. |
中华医学会数字医学分会, 中国医师协会肝癌专业委员会, 中国医师协会临床精准医学专业委员会, 等. 复杂性肝脏肿瘤切除三维可视化精准诊治指南(2019版). 南方医科大学学报, 2020, 40(3): 297-307.
|
20. |
Fang C, An J, Bruno A, et al. Consensus recommendations of three-dimensional visualization for diagnosis and management of liver diseases. Hepatol Int, 2020, 14(4): 437-453.
|
21. |
Ueno M, Hayami S, Sonomura T, et al. Indocyanine green fluorescence imaging techniques and interventional radiology during laparoscopic anatomical liver resection (with video). Surg Endosc, 2018, 32(2): 1051-1055.
|
22. |
方驰华, 张鹏, 刘允怡, 等. 肝胆胰疾病数字智能化诊疗核心技术、体系构建及其应用. 中华外科杂志, 2019, 57(4): 253-257.
|
23. |
Sauer IM, Queisner M, Tang P, et al. Mixed reality in visceral surgery: development of a suitable workflow and evaluation of intraoperative use-cases. Ann Surg, 2017, 266(5): 706-712.
|
24. |
Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg, 2019, 154(11): 1064-1065.
|
25. |
Yuan H, Liu F, Li X, et al. Transcatheter arterial chemoembolization combined with simultaneous DynaCT-guided radiofrequency ablation in the treatment of solitary large hepatocellular carcinoma. Radiol Med, 2019, 124(1): 1-7.
|
26. |
Citone M, Fanelli F, Falcone G, et al. A closer look to the new frontier of artificial intelligence in the percutaneous treatment of primary lesions of the liver. Med Oncol, 2020, 37(6): 55.
|
27. |
Ahn SJ, Lee JM, Lee DH, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol, 2017, 66(2): 347-354.
|
28. |
Huang Q, Zeng Q, Long Y, et al. Fusion imaging techniques and contrast-enhanced ultrasound for thermal ablation of hepatocellular carcinoma—A prospective randomized controlled trial. Int J Hyperthermia, 2019, 36(1): 1207-1215.
|
29. |
Lim S, Lee MW, Rhim H, et al. Mistargeting after fusion imaging-guided percutaneous radiofrequency ablation of hepatocellular carcinomas. J Vasc Interv Radiol, 2014, 25(2): 307-314.
|
30. |
Kim BK, Kim SU, Kim KA, et al. Complete response at first chemoembolization is still the most robust predictor for favorable outcome in hepatocellular carcinoma. J Hepatol, 2015, 62(6): 1304-1310.
|
31. |
Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to image-guided therapies using machine learning: an example for trans-arterial treatment of hepatocellular carcinoma. J Vis Exp, 2018, (140): 58382.
|
32. |
Liu D, Liu F, Xie X, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Eur Radiol, 2020, 30(4): 2365-2376.
|
33. |
Ibragimov B, Toesca D, Chang D, et al. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys, 2018, 45(10): 4763-4774.
|
34. |
Ibragimov B, Toesca DAS, Yuan Y, et al. Neural networks for deep radiotherapy dose analysis and prediction of liver SBRT outcomes. IEEE J Biomed Health Inform, 2019, 23(5): 1821-1833.
|
35. |
Chen H, He Y, Jia W. Precise hepatectomy in the intelligent digital era. Int J Biol Sci, 2020, 16(3): 365-373.
|
36. |
Li S, Jiang H, Pang W. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Comput Biol Med, 2017, 84: 156-167.
|
37. |
Liao HT, Long YX, Han YJ, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma. Clin Transl Med, 2020 Jun 14. doi: 10.1002/ctm2.102.
|
38. |
Ayllón MD, Ciria R, Cruz-Ramírez M, et al. Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation. Liver Transpl, 2018, 24(2): 192-203.
|
39. |
Dorado-Moreno M, Pérez-Ortiz M, Gutiérrez PA, et al. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med, 2017, 77: 1-11.
|
40. |
Ershoff BD, Lee CK, Wray CL, et al. Training and validation of deep neural networks for the prediction of 90-day post-liver transplant mortality using UNOS registry data. Transplant Proc, 2020, 52(1): 246-258.
|
41. |
Cesaretti M, Brustia R, Goumard C, et al. Use of artificial intelligence as innovative method for liver graft macrosteatosis assessment. Liver Transpl, 2020 May 19. doi: 10.1002/lt.25801.
|
42. |
Molinari M, Ayloo S, Tsung A, et al. Prediction of perioperative mortality of cadaveric liver transplant recipients during their evaluations. Transplantation, 2019, 103(10): e297-e307.297-307.
|
43. |
Guo D, Gu D, Wang H, et al. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation. Eur J Radiol, 2019, 117: 33-40.
|
44. |
Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. Cancer Imaging, 2019, 19(1): 11.
|