1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin, 2017, 67(1): 7-30.
|
2. |
吴孟超, 吴东. 原发性肝癌综合治疗的现状与展望. 癌症进展, 2005, 3(5): 410-412, 422.
|
3. |
Giannini EG, Farinati F, Ciccarese F, et al. Prognosis of untreated hepatocellular carcinoma. Hepatology, 2015, 61(1): 184-190.
|
4. |
European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 2012, 56(4): 908-943.
|
5. |
Kim TH, Yun SG, Choi J, et al. Differential impact of serum25-hydroxyvitamin D3 levels on the prognosis of patients with liver cirrhosis according to MELD and Child-Pugh scores. J Korean Med Sci, 2020, 35(19): e129.
|
6. |
Ravid A, Rapaport N, Issachar A, et al. 25-hydroxyvitamin D inhibits hepatitis C virus production in hepatocellular carcinoma cell line by a vitamin D receptor-independent mechanism. Int J Mol Sci, 2019, 20(9): 2367.
|
7. |
Hoan NX, Khuyen N, Binh MT, et al. Association of vitamin D deficiency with hepatitis B virus - related liver diseases. BMC Infect Dis, 2016, 16(1): 507.
|
8. |
Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. Bonekey Rep, 2014, 3: 480.
|
9. |
Díaz L, Díaz-Muñoz M, García-Gaytán AC, et al. Mechanistic effects of calcitriol in cancer biology. Nutrients, 2015, 7(6): 5020-5050.
|
10. |
MacLaughlin JA, Anderson RR, Holick MF. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science, 1982, 216(4549): 1001-1003.
|
11. |
Cheng JB, Levine MA, Bell NH, et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A, 2004, 101(20): 7711-7715.
|
12. |
Schuster I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta, 2011, 1814(1): 186-199.
|
13. |
Jones G, Schnoes HK, DeLuca HF. Isolation and identification of1, 25-dihydroxyvitamin D2. Biochemistry, 1975, 14(6): 1250-1256.
|
14. |
Deluca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep, 2014, 3: 479.
|
15. |
Bakke D, Sun J. Ancient nuclear receptor VDR with new functions: microbiome and inflammation. Inflamm Bowel Dis, 2018, 24(6): 1149-1154.
|
16. |
Ramagopalan SV, Heger A, Berlanga AJ, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res, 2010, 20(10): 1352-1360.
|
17. |
Muralidhar S, Filia A, Nsengimana J, et al. Vitamin D-VDR signaling inhibits Wnt/β-catenin-mediated melanoma progression and promotes antitumor immunity. Cancer Res, 2019, 79(23): 5986-5998.
|
18. |
Stumpf WE, Sar M, Reid FA, et al. Target cells for 1, 25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science, 1979, 206(4423): 1188-1190.
|
19. |
Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab, 2010, 95(2): 471-478.
|
20. |
Walters MR. Newly identified actions of the vitamin D endocrine system. Endocr Rev, 1992, 13(4): 719-764.
|
21. |
Campbell MJ, Trump DL. Vitamin D receptor signaling and cancer. Endocrinol Metab Clin North Am, 2017, 46(4): 1009-1038.
|
22. |
Watkins RR, Lemonovich TL, Salata RA. An update on the association of vitamin D deficiency with common infectious diseases. Can J Physiol Pharmacol, 2015, 93(5): 363-368.
|
23. |
Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol, 2006, 36(2): 361-370.
|
24. |
Trochoutsou AI, Kloukina V, Samitas K, et al. Vitamin-D in the immune system: genomic and non-genomic actions. Mini Rev Med Chem, 2015, 15(11): 953-963.
|
25. |
Goncalves-Mendes N, Talvas J, Dualé C, et al. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: a randomized placebo-controlled trial. Front Immunol, 2019, 10: 65.
|
26. |
Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1, 25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol, 2007, 179(3): 1634-1647.
|
27. |
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med, 2016, 8(328): 328rv4.
|
28. |
Dimitrov V, Bouttier M, Boukhaled G, et al. Hormonal vitamin D up-regulates tissue-specific PD-L1 and PD-L2 surface glycoprotein expression in humans but not mice. J Biol Chem, 2017, 292(50): 20657-20668.
|
29. |
Norman AW. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology, 2006, 147(12): 5542-5548.
|
30. |
Lösel R, Wehling M. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol, 2003, 4(1): 46-56.
|
31. |
Shah S, Islam MN, Dakshanamurthy S, et al. The molecular basis of vitamin D receptor and beta-catenin crossregulation. Mol Cell, 2006, 21(6): 799-809.
|
32. |
Skaaby T, Husemoen LL, Borglykke A, et al. Vitamin D status, liver enzymes, and incident liver disease and mortality: a general population study. Endocrine, 2014, 47(1): 213-220.
|
33. |
Finkelmeier F, Kronenberger B, Köberle V, et al. Severe25-hydroxyvitamin D deficiency identifies a poor prognosis in patients with hepatocellular carcinoma - a prospective cohort study. Aliment Pharmacol Ther, 2014, 39(10): 1204-1212.
|
34. |
Fedirko V, Duarte-Salles T, Bamia C, et al. Prediagnostic circulating vitamin D levels and risk of hepatocellular carcinoma in European populations: a nested case-control study. Hepatology, 2014, 60(4): 1222-1230.
|
35. |
Buonomo AR, Scotto R, Zappulo E, et al. Severe vitamin D deficiency increases mortality among patients with liver cirrhosis regardless of the presence of HCC. In Vivo, 2019, 33(1): 177-182.
|
36. |
Hammad LN, Abdelraouf SM, Hassanein FS, et al. CirculatingIL-6, IL-17 and vitamin D in hepatocellular carcinoma: potential biomarkers for a more favorable prognosis? J Immunotoxicol, 2013, 10(4): 380-386.
|
37. |
Fang AP, Long JA, Zhang YJ, et al. Serum bioavailable, rather than total, 25-hydroxyvitamin D levels are associated with hepatocellular carcinoma survival. Hepatology, 2020, 72(1): 169-182.
|
38. |
Wu YQ, Fan WZ, Xue M, et al. 25-OH-vitamin D deficiency identifies poor tumor response in hepatocellular carcinoma treated with transarterial chemoembolization. Clin Transl Oncol, 2020, 22(1): 70-80.
|
39. |
Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768): 1770-1773.
|
40. |
Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int, 2006, 26(10): 1175-1186.
|
41. |
Duran A, Hernandez ED, Reina-Campos M, et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell, 2016, 30(4): 595-609.
|
42. |
Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell, 2013, 153(3): 601-613.
|
43. |
Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol, 2009, 200(2): 207-221.
|
44. |
Caputo A, Pourgholami MH, Akhter J, et al. 1, 25-dihydroxyvitamin D(3) induced cell cycle arrest in the human primary liver cancer cell line HepG2. Hepatol Res, 2003, 26(1): 34-39.
|
45. |
Tadesse S, Caldon EC, Tilley W, et al. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem, 2019, 62(9): 4233-4251.
|
46. |
Hager G, Formanek M, Gedlicka C, et al. 1, 25(OH)2 vitamin D3 induces elevated expression of the cell cycle-regulating genes P21 and P27 in squamous carcinoma cell lines of the head and neck. Acta Otolaryngol, 2001, 121(1): 103-109.
|
47. |
Liu Y, Wang M, Xu W, et al. Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. Life Sci, 2020, 241: 117086.
|
48. |
Huang J, Yang G, Huang Y, et al. 1, 25(OH)2D3 inhibits the progression of hepatocellular carcinoma via downregulating HDAC2 and upregulating P21(WAFI/CIP1). Mol Med Rep, 2016, 13(2): 1373-1380.
|
49. |
Zhou J, Yu Q, Chng WJ. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol, 2011, 43(12): 1668-1673.
|
50. |
Hamilton JP, Potter JJ, Koganti L, et al. Effects of vitamin D3 stimulation of thioredoxin-interacting protein in hepatocellular carcinoma. Hepatol Res, 2014, 44(13): 1357-1366.
|
51. |
Rizvi A, Farhan M, Naseem I, et al. Calcitriol-copper interaction leads to non enzymatic, reactive oxygen species mediated DNA breakage and modulation of cellular redox scavengers in hepatocellular carcinoma. Apoptosis, 2016, 21(9): 997-1007.
|
52. |
Chen J, Katz LH, Muñoz NM, et al. Vitamin D deficiency promotes liver tumor growth in transforming growth factor-β/Smad3-deficient mice through Wnt and Toll-like receptor 7 pathway modulation. Sci Rep, 2016, 6: 30217.
|
53. |
Matsuda A, Ishiguro K, Yan IK, et al. Therapeutic efficacy of vitamin d in experimental c-MET-β-catenin-driven hepatocellular cancer. Gene Expr, 2019, 19(2): 151-159.
|
54. |
Falleti E, Bitetto D, Fabris C, et al. Vitamin D receptor gene polymorphisms and hepatocellular carcinoma in alcoholic cirrhosis. World J Gastroenterol, 2010, 16(24): 3016-3024.
|
55. |
Hung CH, Chiu YC, Hu TH, et al. Significance of vitamin d receptor gene polymorphisms for risk of hepatocellular carcinoma in chronic hepatitis C. Transl Oncol, 2014, 7(4): 503-507.
|
56. |
Peng Q, Yang S, Lao X, et al. Association of single nucleotide polymorphisms in VDR and DBP genes with HBV-related hepatocellular carcinoma risk in a Chinese population. PLoS One, 2014, 9(12): e116026.
|
57. |
Quan Y, Yang J, Qin T, et al. Associations between twelve common gene polymorphisms and susceptibility to hepatocellular carcinoma: evidence from a meta-analysis. World J Surg Oncol, 2019, 17(1): 216.
|
58. |
Chiang KC, Persons KS, Istfan NW, et al. Fish oil enhances the antiproliferative effect of 1alpha, 25-dihydroxyvitamin D3 on liver cancer cells. Anticancer Res, 2009, 29(9): 3591-3596.
|
59. |
Chiang KC, Yen CL, Yeh CN, et al. Hepatocellular carcinoma cells express 25(OH)D-1α-hydroxylase and are able to convert 25(OH)D to 1α, 25(OH)2D, leading to the 25(OH)D-induced growth inhibition. J Steroid Biochem Mol Biol, 2015, 154: 47-52.
|
60. |
Finlay IG, Stewart GJ, Ahkter J, et al. A phase one study of the hepatic arterial administration of 1, 25-dihydroxyvitamin D3 for liver cancers. J Gastroenterol Hepatol, 2001, 16(3): 333-337.
|
61. |
Morris DL, Jourdan JL, Finlay I, et al. Hepatic intra-arterial injection of 1, 25-dihydroxyvitamin D3 in lipiodol: pilot study in patients with hepatocellular carcinoma. Int J Oncol, 2002, 21(4): 901-906.
|
62. |
Leyssens C, Verlinden L, Verstuyf A. Antineoplastic effects of1, 25(OH)2D3 and its analogs in breast, prostate and colorectal cancer. Endocr Relat Cancer, 2013, 20(2): R31-R47.
|
63. |
Chiang KC, Yeh CN, Chen HY, et al. 19-Nor-2α-(3-hydroxypropyl)-1α, 25-dihydroxyvitamin D3 (MART-10) is a potent cell growth regulator with enhanced chemotherapeutic potency in liver cancer cells. Steroids, 2011, 76(13): 1513-1519.
|
64. |
Ghous Z, Akhter J, Pourgholami MH, et al. Inhibition of hepatocellular cancer by EB1089: in vitro and in vive study. Anticancer Res, 2008, 28(6A): 3757-3761.
|
65. |
Sahpazidou D, Stravoravdi P, Toliou T, et al. Significant experimental decrease of the hepatocellular carcinoma incidence in C3H/Sy mice after long-term administration of EB1089, a vitamin D analogue. Oncol Res, 2003, 13(5): 261-268.
|
66. |
Dalhoff K, Dancey J, Astrup L, et al. A phase Ⅱ study of the vitamin D analogue seocalcitol in patients with inoperable hepatocellular carcinoma. Br J Cancer, 2003, 89(2): 252-257.
|
67. |
Provvisiero DP, Negri M, de Angelis C, et al. Vitamin D reverts resistance to the mTOR inhibitor everolimus in hepatocellular carcinoma through the activation of a miR-375/oncogenes circuit. Sci Rep, 2019, 9(1): 11695.
|
68. |
Ebrahim A, El-Mesery M, El-Karef A, et al. Vitamin D potentiates anti-tumor activity of 5-fluorouracil via modulating caspase-3 and TGF-β1 expression in hepatocellular carcinoma-induced in rats. Can J Physiol Pharmacol, 2018, 96(12): 1218-1225.
|
69. |
Xu J, Wang Y, Zhang Y, et al. Astemizole promotes the anti-tumor effect of vitamin D through inhibiting miR-125a-5p-meidated regulation of VDR in HCC. Biomed Pharmacother, 2018, 107: 1682-1691.
|
70. |
Wu Q, Wang X, Pham K, et al. Enhancement of sorafenib-mediated death of hepatocellular carcinoma cells by Carnosic acid and Vitamin D2 analog combination. J Steroid Biochem Mol Biol, 2020, 197: 105524.
|