1. |
Lim H, Devesa SS, Sosa JA, et al. Trends in thyroid cancer incidence and mortality in the united states, 1974–2013. JAMA, 2017, 317(13): 1338-1348.
|
2. |
Zhu X, Yao J, Tian W. Microarray technology to investigate genes associated with papillary thyroid carcinoma. Mol Med Rep, 2015, 11(5): 3729-3733.
|
3. |
Dailey ME, Lindsay S, Skahen R. Relation of thyroid neoplasms to Hashimoto disease of the thyroid gland. AMA Archives Surg, 1955, 70(2): 291-297.
|
4. |
周晓倩, 刘俊, 金慧, 等. 桥本甲状腺炎与甲状腺乳头状癌的关系研究. 中国医师杂志, 2015, 17(10): 1578-1579.
|
5. |
Molnár C, Molnár S, Bedekovics J, et al. Thyroid carcinoma coexisting with Hashimoto’s thyreoiditis: clinicopathological and molecular characteristics clue up pathogenesis. Pathol Oncol Res, 2019, 25(3): 1191-1197.
|
6. |
Uhliarova B, Hajtman A. Hashimoto’s thyroiditis—an independent risk factor for papillary carcinoma. Braz J Otorhinolaryngol, 2018, 84(6): 729-735.
|
7. |
李浩, 李华玉, 唐金涛, 等. 分化型甲状腺癌伴与不伴慢性淋巴细胞性甲状腺炎的临床对比. 临床与病理杂志, 2020, 40(6): 1376-1381.
|
8. |
Graceffa G, Patrone R, Vieni S, et al. Association between Hashimoto’s thyroiditis and papillary thyroid carcinoma: a retrospective analysis of 305 patients. BMC Endocr Disord, 2019, 19(Suppl 1): 26.
|
9. |
张广, 边学海, 李世杰, 等. 甲状腺炎合并甲状腺癌 210 例诊治分析. 中国实用外科杂志, 2011, 31(6): 525-526, 529.
|
10. |
Zhang Y, Dai J, Wu T, et al. The study of the coexistence of Hashimoto’s thyroiditis with papillary thyroid carcinoma. J Cancer Res Clin Oncol, 2014, 140(6): 1021-1026.
|
11. |
Silva de Morais N, Stuart J, Guan H, et al. The impact of Hashimoto thyroiditis on thyroid nodule cytology and risk of thyroid cancer. J Endocr Soc, 2019, 3(4): 791-800.
|
12. |
Pyzik A, Grywalska E, Matyjaszek-Matuszek B, et al. Immune disorders in Hashimoto’s thyroiditis: what do we know so far? J Immunol Res, 2015, 2015: 979167.
|
13. |
Anand A, Singh KR, Kushwaha JK, et al. Papillary thyroid cancer and Hashimoto’s thyroiditis: An association less understood. Indian J Surg Oncol, 2014, 5(3): 199-204.
|
14. |
Fussey JM, Beaumont RN, Wood AR, et al. Mendelian randomization supports a causative effect of TSH on thyroid carcinoma. Endocr Relat Cancer, 2020, 27(10): 551-559.
|
15. |
Rayman MP. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc Nutr Soc, 2019, 78(1): 34-44.
|
16. |
Farebrother J, Zimmermann MB, Andersson M. Excess iodine intake: sources, assessment, and effects on thyroid function. Ann N Y Acad Sci, 2019, 1446(1): 44-65.
|
17. |
王翔, 尹雅楠, 孔姿莉, 等. 分化型甲状腺癌肿瘤局部免疫细胞亚群与其复发关系. 青岛大学学报(医学版), 2020, 56(5): 566-570.
|
18. |
Shi L, Zhou L, Wang J, et al. Cytokine production of papillary thyroid carcinoma coexisting with Hashimoto’s thyroiditis. Int J Clin Exp Pathol, 2017, 10(9): 9567-9574.
|
19. |
Ellyard JI, Simson L, Parish CR. Th2-mediated anti-tumour immunity: friend or foe? Tissue Antigens, 2007, 70(1): 1-11.
|
20. |
Miccoli P, Torregrossa L, Borrelli N, et al. E-selectin expression and BRAF status in papillary thyroid carcinomas: Correlation with clinicopathologic features. Surgery, 2014, 156(6): 1550-1558.
|
21. |
Ehlers M, Schott M. Hashimoto’s thyroiditis and papillary thyroid cancer: are they immunologically linked? Trends Endocrinol Metab, 2014, 25(12): 656-664.
|
22. |
Arif S, Blanes A, Diaz-Cano SJ. Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma. Histopathology, 2002, 41(4): 357-362.
|
23. |
鲁海珍, 张楠, 刘皖, 等. 伴和不伴有桥本甲状腺炎的甲状腺乳头状癌的蛋白表达差异. 中华肿瘤杂志, 2020, 42(6): 463-468.
|
24. |
Royer MC, Zhang H, Fan CY, et al. Genetic alterations in papillary thyroid carcinoma and hashimoto thyroiditis: An analysis of hOGG1 loss of heterozygosity. Arch Otolaryngol Head Neck Surg, 2010, 136(3): 240-242.
|
25. |
Larson SD, Jackson LN, Riall TS, et al. Increased incidence of well-differentiated thyroid cancer associated with Hashimoto thyroiditis and the role of the PI3k/Akt pathway. J Am Coll Surg, 2007, 204(5): 764-775.
|
26. |
Divani SN, Kalodimos GP, Lioupis MA, et al. Hashimoto’s thyroiditis and papillary thyroid carcinoma. Are cytokeratin 19 and P63 proteins of any diagnostic value? Hell J Nucl Med, 2016, 19(3): 250-253.
|
27. |
Kumarasamy VM, Shin YJ, White J, et al. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer, 2015, 15: 599.
|
28. |
Staubitz JI, Schad A, Springer E, et al. Novel rearrangements involving the RET gene in papillary thyroid carcinoma. Cancer Genet, 2019, 230: 13-20.
|
29. |
Punda A, Bedeković V, Barić A, et al. RET expression and its correlation with clinicopathologic data in papillary thyroid carcinoma. Acta Clin Croat, 2018, 57(4): 646-652.
|
30. |
Abdullah MI, Junit SM, Ng KL, et al. Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci, 2019, 16(3): 450-460.
|
31. |
Rhoden KJ, Unger K, Salvatore G, et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab, 2006, 91(6): 2414-2423.
|
32. |
Pufnock JS, Rothstein JL. Oncoprotein signaling mediates tumor-specific inflammation and enhances tumor progression. J Immunol, 2009, 182(9): 5498-5506.
|
33. |
Gupta A, Jain S, Khurana N, et al. Expression of p63 and Bcl-2 in malignant thyroid tumors and their correlation with other diagnostic immunocytochemical markers. J Clin Diagn Res, 2016, 10(7): EC04-EC08.
|
34. |
Manzella L, Stella S, Pennisi MS, et al. New insights in thyroid cancer and p53 family proteins. Int J Mol Sci, 2017, 18(6): 1325.
|
35. |
魏涛, 朱精强. p53基因家族与甲状腺癌的相关研究进展. 中国普外基础与临床杂志, 2019, 26(11): 1372-1377.
|
36. |
Burstein DE, Nagi C, Wang BY, et al. Immunohistochemical detection of p53 homolog p63 in solid cell nests, papillary thyroid carcinoma, and hashimoto’s thyroiditis: a stem cell hypothesis of papillary carcinoma oncogenesis. Hum Pathol, 2004, 35(4): 465-473.
|
37. |
Jankovic B, Le KT, Hershman JM. Clinical review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab, 2013, 98(2): 474-482.
|
38. |
何榕洲, 江瑜, 余济春, 等. BRAF 基因与甲状腺癌关系的研究进展. 中华外科杂志, 2016, 54(3): 237-240.
|
39. |
Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol, 2015, 16(5): 281-298.
|
40. |
Yan C, Huang M, Li X, et al. Relationship between BRAFV600E and clinical features in papillary thyroid carcinoma. Endocr Connect, 2019, 8(7): 988-996.
|
41. |
Zhang Q, Liu SZ, Zhang Q, et al. Meta-analyses of association between BRAFV600Emutation and clinicopathological features of papillary thyroid carcinoma. Cell Physiol Biochem, 2016, 38(2): 763-776.
|
42. |
Kim SJ, Myong JP, Jee HG, et al. Combined effect of Hashimoto’s thyroiditis and BRAFV600E mutation status on aggressiveness in papillary thyroid cancer. Head Neck, 2016, 38(1): 95-101.
|
43. |
Pessôa-Pereira D, Medeiros MFDS, Lima VMS, et al. Association between BRAFV600E mutation and clinicopathological features of papillary thyroid carcinoma: a Brazilian single-centre case series. Arch Endocrinol Metab, 2019, 63(2): 97-106.
|
44. |
Noorolyai S, Shajari N, Baghbani E, et al. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698: 120-128.
|
45. |
史晓莉, 申红梅. PI3K/AKT 信号通路相关基因拷贝数变异与甲状腺癌关系的研究进展. 中华地方病学杂志, 2019, 38(1): 83-86.
|
46. |
Robbins HL, Hague A. The PI3K/Akt pathway in tumors of endocrine tissues. Front Endocrinol (Lausanne), 2016, 6: 188.
|
47. |
Xin Y, Guan D, Meng K, et al. Diagnostic accuracy of CK-19, Galectin-3 and HBME-1 on papillary thyroid carcinoma: a meta-analysis. Int J Clin Exp Pathol, 2017, 10(8): 8130-8140.
|
48. |
Abouhashem NS, Talaat SM. Diagnostic utility of CK19 and CD56 in the differentiation of thyroid papillary carcinoma from its mimics. Pathol Res Pract, 2017, 213(5): 509-517.
|
49. |
Dong S, Xie XJ, Xia Q, et al. Indicators of multifocality in papillary thyroid carcinoma concurrent with Hashimoto’s thyroiditis. Am J Cancer Res, 2019, 9(8): 1786-1795.
|
50. |
Cho H, Kim JY, Oh YL. Diagnostic value of HBME-1, CK19, Galectin 3, and CD56 in the subtypes of follicular variant of papillary thyroid carcinoma. Pathol Int, 2018, 68(11): 605-613.
|
51. |
Ma H, Yan J, Zhang C, et al. Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto’s thyroiditis. Int J Clin Exp Pathol, 2014, 7(11): 7999-8007.
|
52. |
Mohamed SY, Ibrahim TR, Elbasateeny SS, et al. Clinicopathological characterization and prognostic implication of FOXP3 and CK19 expression in papillary thyroid carcinoma and concomitant Hashimoto’s thyroiditis. Sci Rep, 2020, 10(1): 10651.
|
53. |
Ma Y, He J, Shen N, et al. Expression of NIS, VEGF-A and thyroid autoantibody in papillary thyroid carcinoma with or without Hashimoto’s disease. ORL J Otorhinolaryngol Relat Spec, 2019, 81(5-6): 281-286.
|
54. |
Mohamad Pakarul Razy NH, Wan Abdul Rahman WF, Win TT. Expression of vascular endothelial growth factor and its receptors in thyroid nodular hyperplasia and papillary thyroid carcinoma: A tertiary health care centre based study. Asian Pac J Cancer Prev, 2019, 20(1): 277-282.
|
55. |
Abbasalizad Farhangi M, Tajmiri S. The correlation between inflammatory and metabolic parameters with thyroid function in patients with Hashimoto’s thyroiditis: the potential role of interleukin 23 (IL-23) and vascular endothelial growth factor (VEGF)-1. Acta Endocrinol (Buchar), 2018, 14(2): 163-168.
|