1. |
van Veldhuisen E, van den Oord C, Brada LJ, et al. locally advanced pancreatic cancer: work-up, staging, and local intervention strategies. Cancers (Basel), 2019, 11(7): 976.
|
2. |
Ducreux M, Cuhna AS, Caramella C, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2015, 26(Suppl 5): v56-v68.
|
3. |
Tempero MA, Malafa MP, Al-Hawary M, et al. Pancreatic Adenocarcinoma, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2017, 15(8): 1028-1061.
|
4. |
Gilbert JW, Wolpin B, Clancy T, et al. Borderline resectable pancreatic cancer: conceptual evolution and current approach to image-based classification. Ann Oncol, 2017, 28(9): 2067-2076.
|
5. |
Konstantinidis IT, Warshaw AL, Allen JN, et al. Pancreatic ductal adenocarcinoma: is there a survival difference for R1 resections versus locally advanced unresectable tumors? What is a “true” R0 resection? Ann Surg, 2013, 257(4): 731-736.
|
6. |
Bilimoria KY, Talamonti MS, Sener SF, et al. Effect of hospital volume on margin status after pancreaticoduodenectomy for cancer. J Am Coll Surg, 2008, 207(4): 510-519.
|
7. |
Rhee H, Park MS. the role of imaging in current treatment strategies for pancreatic adenocarcinoma. Korean J Radiol, 2020, [Online ahead of print].
|
8. |
Neoptolemos JP, Palmer DH, Ghaneh P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet, 2017, 389(10073): 1011-1024.
|
9. |
Conroy T, Hammel P, Hebbar M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med, 2018, 379(25): 2395-2406.
|
10. |
Wolfe AR, Robb R, Hegazi A, et al. Altered gemcitabine and nab-paclitaxel scheduling improves therapeutic efficacy compared to standard concurrent treatment in pre-clinical models of pancreatic cancer. Clin Cancer Res, 2020, [Online ahead of print].
|
11. |
Kouzy R, Abi Jaoude J, Lin D, et al. patient-reported outcome measures in pancreatic cancer receiving radiotherapy. Cancers (Basel), 2020, 12(9): 2487.
|
12. |
Chuong MD, Springett GM, Freilich JM, et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys, 2013, 86(3): 516-522.
|
13. |
Abi Jaoude J, Kouzy R, Nguyen ND, et al. Radiation therapy for patients with locally advanced pancreatic cancer: evolving techniques and treatment strategies. Curr Probl Cancer, 2020: 100607.
|
14. |
中华医学会外科学分会胰腺外科学组, 中国研究型医院学会胰腺疾病专业委员会. 中国胰腺癌新辅助治疗指南 (2020版). 中华外科杂志, 2020, 58(9): 657-667.
|
15. |
Iacobuzio-Donahue CA, Fu B, Yachida S, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol, 2009, 27(11): 1806-1813.
|
16. |
Flak RV, Stender MT, Jensen TM, et al. Treatment of locally advanced pancreatic cancer with irreversible electroporation - a Danish single center study of safety and feasibility. Scand J Gastroenterol, 2019, 54(2): 252-258.
|
17. |
Bear AS, Vonderheide RH, O’Hara MH. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell, 2020, [Online ahead of print].
|
18. |
Chiorean EG, Von Hoff DD, Reni M, et al. CA19-9 decrease at8 weeks as a predictor of overall survival in a randomized phase Ⅲ trial (MPACT) of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic pancreatic cancer. Ann Oncol, 2016, 27(4): 654-660.
|
19. |
Noda Y, Goshima S, Miyoshi T, et al. Assessing chemotherapeutic response in pancreatic ductal adenocarcinoma: histogram analysis of iodine concentration and CT number in single-source dual-energy CT. AJR Am J Roentgenol, 2018, 211(6): 1221-1226.
|
20. |
Kawamoto S, Fuld MK, Laheru D, et al. Assessment of iodine uptake by pancreatic cancer following chemotherapy using dual-energy CT. Abdom Radiol (NY), 2018, 43(2): 445-456.
|
21. |
Nishiofuku H, Tanaka T, Marugami N, et al. Increased tumour ADC value during chemotherapy predicts improved survival in unresectable pancreatic cancer. Eur Radiol, 2016, 26(6): 1835-1842.
|
22. |
Cuneo KC, Chenevert TL, Ben-Josef E, et al. A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol, 2014, 7(5): 644-649.
|
23. |
Wang ZJ, Behr S, Consunji MV, et al. Early response assessment in pancreatic ductal adenocarcinoma through integrated PET/MRI. AJR Am J Roentgenol, 2018, 211(5): 1010-1019.
|
24. |
Glicksman RM, Chung H, Myrehaug S, et al. stereotactic radiotherapy for pancreatic cancer: a single-institution experience. Cureus, 2020, 12(9): e10618.
|
25. |
Talbot A, Devos L, Dubus F, et al. Multimodal imaging in radiotherapy: focus on adaptive therapy and quality control. Cancer Radiother, 2020, 24(5): 411-417.
|
26. |
Ziegler M, Nakamura M, Hirashima H, et al. Accumulation of the delivered treatment dose in volumetric modulated arc therapy with breath-hold for pancreatic cancer patients based on daily cone beam computed tomography images with limited field-of-view. Med Phys, 2019, 46(7): 2969-2977.
|
27. |
Wagner M, Antunes C, Pietrasz D, et al. CT evaluation after neoadjuvant FOLFIRINOX chemotherapy for borderline and locally advanced pancreatic adenocarcinoma. Eur Radiol, 2017, 27(7): 3104-3116.
|
28. |
Barreto SG, Loveday B, Windsor JA, et al. Detecting tumour response and predicting resectability after neoadjuvant therapy for borderline resectable and locally advanced pancreatic cancer. ANZ J Surg, 2019, 89(5): 481-487.
|
29. |
Katz MH, Fleming JB, Bhosale P, et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer, 2012, 118(23): 5749-5756.
|
30. |
Cassinotto C, Cortade J, Belleannée G, et al. An evaluation of the accuracy of CT when determining resectability of pancreatic head adenocarcinoma after neoadjuvant treatment. Eur J Radiol, 2013, 82(4): 589-593.
|
31. |
Okada KI, Hirono S, Kawai M, et al. Value of apparent diffusion coefficient prior to neoadjuvant therapy is a predictor of histologic response in patients with borderline resectable pancreatic carcinoma. J Hepatobiliary Pancreat Sci, 2017, 24(3): 161-168.
|
32. |
Dalah E, Erickson B, Oshima K, et al. Correlation of ADC with pathological treatment response for radiation therapy of pancreatic cancer. Transl Oncol, 2018, 11(2): 391-398.
|
33. |
Chang JS, Choi SH, Lee Y, et al. Clinical usefulness of 18F-fluorodeoxyglucose-positron emission tomography in patients with locally advanced pancreatic cancer planned to undergo concurrent chemoradiation therapy. Int J Radiat Oncol Biol Phys, 2014, 90(1): 126-133.
|
34. |
Borhani AA, Dewan R, Furlan A, et al. Assessment of response to neoadjuvant therapy using CT texture analysis in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma. AJR Am J Roentgenol, 2020, 214(2): 362-369.
|
35. |
Ciaravino V, Cardobi N, DE Robertis R, et al. CT texture analysis of ductal adenocarcinoma downstaged after chemotherapy. Anticancer Res, 2018, 38(8): 4889-4895.
|
36. |
Khalvati F, Zhang Y, Baig S, et al. prognostic value of CT radiomic features in resectable pancreatic ductal adenocarcinoma. Sci Rep, 2019, 9(1): 5449.
|
37. |
Nasief H, Hall W, Zheng C, et al. Improving treatment response prediction for chemoradiation therapy of pancreatic cancer using a combination of delta-radiomics and the clinical biomarker CA19-9. Front Oncol, 2020, 9: 1464.
|
38. |
Nasief H, Zheng C, Schott D, et al. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. NPJ Precis Oncol, 2019, 3: 25.
|
39. |
Flak RV, Stender MT, Stenholt L, et al. Imaging response evaluation after local ablative treatments in locally advanced pancreatic cancer: an expedited systematic review. HPB (Oxford), 2020, 22(8): 1083-1091.
|