1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Thimme R, Neagu M, Boettler T, et al. Comprehensive analysis of the alpha-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology, 2008, 48(6): 1821-1833.
|
3. |
McGlynn KA, Petrick JL, London WT. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis, 2015, 19(2): 223-238.
|
4. |
Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers, 2016, 2: 16018.
|
5. |
Zucman-Rossi J, Villanueva A, Nault JC, et al. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology, 2015, 149(5): 1226-1239.
|
6. |
Kirkwood JM, Butterfield LH, Tarhini AA, et al. Immunotherapy of cancer in 2012. CA Cancer J Clin, 2012, 62(5): 309-335.
|
7. |
Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol, 2018, 19(7): 940-952.
|
8. |
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088): 2492-2502.
|
9. |
Rizvi S, Wang J, El-Khoueiry AB. Liver cancer immunity. Hepatology, 2021, 73 Suppl 1: 86-103.
|
10. |
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范 (2019年版). 中国实用外科杂志, 2020, 40(2): 121-138.
|
11. |
赵洋, 张勇, 燕蒙, 等. 基于转录组的肝细胞癌分子分型研究进展. 中国科学: 生命科学, 2019, 49(1): 10-17.
|
12. |
Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 2017, 169(7): 1327-1341.
|
13. |
Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2015, 12(12): 681-700.
|
14. |
Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology, 2017, 153(3): 812-826.
|
15. |
Park BV, Freeman ZT, Ghasemzadeh A, et al. TGFβ1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov, 2016, 6(12): 1366-1381.
|
16. |
Stephen TL, Rutkowski MR, Allegrezza MJ, et al. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity, 2014, 41(3): 427-439.
|
17. |
Flavell RA, Sanjabi S, Wrzesinski SH, et al. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol, 2010, 10(8): 554-567.
|
18. |
吴志超, 林伯斌, 孙少杰, 等. 肝癌组织中TGF-β1、β-catenin和EMT相关蛋白表达水平及临床意义. 中国现代普通外科进展, 2019, 22(12): 930-934.
|
19. |
樊嘉, 高强. 肝癌分子分型指导精准诊断与治疗的研究前沿. 中华消化外科杂志, 2020, 19(1): 28-31.
|
20. |
Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018, 68(3): 1025-1041.
|
21. |
Tsujikawa H, Masugi Y, Yamazaki K, et al. Immunohistochemical molecular analysis indicates hepatocellular carcinoma subgroups that reflect tumor aggressiveness. Hum Pathol, 2016, 50: 24-33.
|
22. |
Garnelo M, Tan A, Her Z, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut, 2017, 66(2): 342-351.
|
23. |
Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 2015, 527(7577): 249-253.
|
24. |
Zhang Q, Lou Y, Yang J, et al. Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut, 2019, 68(11): 2019-2031.
|
25. |
Geiger R, Rieckmann JC, Wolf T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell, 2016, 167(3): 829-842.
|
26. |
Garris CS, Arlauckas SP, Kohler RH, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity, 2018, 49(6): 1148-1161.
|
27. |
Takeda Y, Kataoka K, Yamagishi J, et al. A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep, 2017, 19(9): 1874-1887.
|
28. |
Wang S, Campos J, Gallotta M, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A, 2016, 113(46): E7240-E7249.
|
29. |
Samson A, Scott KJ, Taggart D, et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med, 2018, 10(422): eaam7577.
|
30. |
Bourgeois-Daigneault MC, Roy DG, Aitken AS, et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med, 2018, 10(422): eaao1641.
|
31. |
Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell, 2017, 170(6): 1109-1119.
|
32. |
Wu C, Ning H, Liu M, et al. Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. J Clin Invest, 2018, 128(8): 3425-3438.
|
33. |
Allen E, Jabouille A, Rivera LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med, 2017, 9(385): eaak9679.
|
34. |
Liu W, Putnam AL, Zhou XY, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med, 2006, 203(7): 1701-1711.
|
35. |
Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell, 2017, 169(7): 1342-1356.
|
36. |
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 2017, 377(25): 2500-2501.
|
37. |
Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet, 2019, 51(2): 202-206.
|
38. |
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528): 568-571.
|
39. |
Ma J, Zheng B, Goswami S, et al. PD1Hi CD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer, 2019, 7(1): 331.
|
40. |
Tian MX, Liu WR, Wang H, et al. Tissue-infiltrating lymphocytes signature predicts survival in patients with early/intermediate stage hepatocellular carcinoma. BMC Med, 2019, 17(1): 106.
|
41. |
Wei L, Delin Z, Kefei Y, et al. A classification based on tumor budding and immune score for patients with hepatocellular carcinoma. Oncoimmunology, 2019, 9(1): 1672495.
|