1. |
Huang J, Lok V, Ngai CH, et al. Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology, 2021, 160(3): 744-754.
|
2. |
Makohon-Moore A, Brosnan JA, Iacobuzio-Donahue CA. Pancreatic cancer genomics: insights and opportunities for clinical translation. Genome Med, 2013, 5(3): 26.
|
3. |
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science, 2013, 339(6127): 1546-1558.
|
4. |
Lucito R, Suresh S, Walter K, et al. Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biol Ther, 2007, 6(10): 1592-1599.
|
5. |
荆薇, 杨向红. 基因异常对胰腺癌预后影响的研究进展. 实用医学杂志, 2019, 35(5): 838-841.
|
6. |
Yang M, Zeng L, Ke NW, et al. World Health Organization grading classification for pancreatic neuroendocrine neoplasms: a comprehensive analysis from a large Chinese institution. BMC Cancer, 2020, 20(1): 906.
|
7. |
杨美文, 张雷达. 胰腺癌患病情况及其危险因素分析. 中国医学前沿杂志(电子版), 2017, 9(4): 122-124.
|
8. |
Imura Y, Nakai T, Yamada S, et al. Functional and therapeutic relevance of hepatocyte growth factor/c-MET signaling in synovial sarcoma. Cancer Sci, 2016, 107(12): 1867-1876.
|
9. |
Zhang Y, Xia M, Jin K, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer, 2018, 17(1): 45.
|
10. |
Park S, Choi YL, Sung CO, et al. High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol, 2012, 27(2): 197-207.
|
11. |
Duplaquet L, Kherrouche Z, Baldacci S, et al. The multiple paths towards MET receptor addiction in cancer. Oncogene, 2018, 37(24): 3200-3215.
|
12. |
Chen TH, Chan PC, Chen CL, et al. Phosphorylation of focal adhesion kinase on tyrosine 194 by Met leads to its activation through relief of autoinhibition. Oncogene, 2011, 30(2): 153-166.
|
13. |
Maulik G, Kijima T, Ma PC, et al. Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res, 2002, 8(2): 620-627.
|
14. |
Hamacher R, Schmid RM, Saur D, et al. Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol Cancer, 2008, 7: 64.
|
15. |
Symeonides SN, Anderton SM, Serrels A. FAK-inhibition opens the door to checkpoint immunotherapy in Pancreatic Cancer. J Immunother Cancer, 2017, 5: 17.
|
16. |
Asano T, Yao Y, Shin S, et al. Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res, 2005, 65(20): 9164-9168.
|
17. |
González MN, de Mello W, Butler-Browne GS, et al. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle, 2017, 7(1): 20.
|
18. |
Pascale RM, Feo F, Calvisi DF. An infernal cross-talk between oncogenic β-catenin and c-Met in hepatocellular carcinoma: Evidence from mouse modeling. Hepatology, 2016, 64(5): 1421-1423.
|
19. |
Lee KH, Hyun MS, Kim JR. Growth factor-dependent activation of the MAPK pathway in human pancreatic cancer: MEK/ERK and p38 MAP kinase interaction in uPA synthesis. Clin Exp Metastasis, 2003, 20(6): 499-505.
|
20. |
Corso S, Giordano S. Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov, 2013, 3(9): 978-992.
|
21. |
Ghiso E, Giordano S. Targeting MET: why, where and how? Curr Opin Pharmacol, 2013, 13(4): 511-518.
|
22. |
Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther, 2014, 142(3): 316-338.
|
23. |
Blagotinsek K, Rozman D. Targeting signalling pathways in hepatocellular carcinoma. Curr Pharm Des, 2017, 23(1): 170-175.
|
24. |
Bouattour M, Raymond E, Qin S, et al. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology, 2018, 67(3): 1132-1149.
|