1. |
Nuzzo G, Giuliante F, Persiani R. The risk of biliary ductal injury during laparoscopic cholecystectomy. J Chir (Paris), 2004, 141(6): 343-353.
|
2. |
Kapoor VK. Bile duct injury repair: when? what? who? J Hepatobiliary Pancreat Surg, 2007, 14(5): 476-479.
|
3. |
Struecker B, Hillebrandt KH, Raschzok N, et al. Implantation of a tissue-engineered neo-bile duct in domestic pigs. Eur Surg Res, 2016, 56(1-2): 61-75.
|
4. |
Nejak-Bowen K. If it looks like a duct and acts like a duct: On the role of reprogrammed hepatocytes in cholangiopathies. Gene Expr, 2020, 20(1): 19-23.
|
5. |
Schreuder AM, Busch OR, Besselink MG, et al. Long-term impact of iatrogenic bile duct injury. Dig Surg, 2020, 37(1): 10-21.
|
6. |
Thomas MN, Stippel DL. Management of bile duct injuries. Chirurg, 2020, 91(1): 18-22.
|
7. |
Langheinrich M, Wirtz S, Kneis B, et al. Microbiome patterns in matched bile, duodenal, pancreatic tumor tissue, drainage, and stool samples: Association with preoperative stenting and postoperative pancreatic fistula development. J Clin Med, 2020, 9(9): 2785.
|
8. |
Min J, Ningappa M, So J, et al. Systems analysis of biliary atresia through integration of high-throughput biological data. Front Physiol, 2020, 11: 966.
|
9. |
Sampaziotis F, Justin AW, Tysoe OC, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med, 2017, 23(8): 954-963.
|
10. |
van Rijn R, van Leeuwen OB, Matton APM, et al. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers. Liver Transpl, 2018, 24(5): 655-664.
|
11. |
Pérez Alonso AJ, Del Olmo Rivas C, Romero IM, et al. Tissue-engineering repair of extrahepatic bile ducts. J Surg Res, 2013, 179(1): 18-21.
|
12. |
程瑶, 张杰, 程南生, 等. 组织工程化胆管的研究现状及展望. 中国普外基础与临床杂志, 2015, 22(7): 879-883.
|
13. |
Porzionato A, Stocco E, Barbon S, et al. Tissue-engineered grafts from human decellularized extracellular matrices: A systematic review and future perspectives. Int J Mol Sci, 2018, 19(12): 4117.
|
14. |
Cheng Y, Xiong XZ, Zhou RX, et al. Repair of a common bile duct defect with a decellularized ureteral graft. World J Gastroenterol, 2016, 22(48): 10575-10583.
|
15. |
Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3): 480-486.
|
16. |
Schneider KH, Enayati M, Grasl C, et al. Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance. Biomaterials, 2018, 177: 14-26.
|
17. |
Hashemi J, Pasalar P, Soleimani M, et al. Decellularized pancreas matrix scaffolds for tissue engineering using ductal or arterial catheterization. Cells Tissues Organs, 2018, 205(2): 72-84.
|
18. |
Loy C, Pezzoli D, Candiani G, et al. A Cost-effective culture system for the in vitro assembly, maturation, and stimulation of advanced multilayered multiculture tubular tissue models. Biotechnol J, 2018, 13(1), Epub 2017 Sep 20. [Online ahead of print].
|
19. |
Schanaider A, Pannain VL, Müller LC, et al. Expanded polytetrafluoroethylene in canine bile duct injury: a critical analysis. Acta Cir Bras, 2011, 26(4): 247-252.
|
20. |
Tal AO, Finkelmeier F, Filmann N, et al. Multiple plastic stents versus covered metal stent for treatment of anastomotic biliary strictures after liver transplantation: a prospective, randomized, multicenter trial. Gastrointest Endosc, 2017, 86(6): 1038-1045.
|
21. |
马利锋, 康建省, 李涛, 等. 新型生物可降解支架材料生物特性及在损伤胆道修复中的应用. 中国组织工程研究, 2016, 20(30): 4434-4441.
|
22. |
Rambøl MH, Hisdal J, Sundhagen JO, et al. Recellularization of decellularized venous grafts using peripheral blood: A critical evaluation. EBioMedicine, 2018, 32: 215-222.
|
23. |
王伟, 马利林, 帅敏, 等. 具有活性的同种生物静脉脱细胞支架的制备. 中国现代医学杂志, 2008, 18(2): 186-189, 193.
|
24. |
Liu W, Zhang SN, Hu ZQ, et al. Study of Recellularized human acellular arterial matrix repairs porcine biliary segmental defects. Tissue Eng Regen Med, 2019, 16(6): 653-665.
|
25. |
Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev, 2016, 22(1): 68-100.
|
26. |
Gritsch L, Conoscenti G, La Carrubba V, et al. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. Mater Sci Eng C Mater Biol Appl, 2019, 94: 1083-1101.
|
27. |
Subbiah R, Guldberg RE. Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv Healthc Mater, 2019, 8(1): e1801000.
|
28. |
Khorramirouz R, Go JL, Noble C, et al. A novel surgical technique for a rat subcutaneous implantation of a tissue engineered scaffold. Acta Histochem, 2018, 120(3): 282-291.
|
29. |
Park W, Kim KY, Kang JM, et al. Metallic stent mesh coated with silver nanoparticles suppresses stent-induced tissue hyperplasia and biliary sludge in the rabbit extrahepatic bile duct. Pharmaceutics, 2020, 12(6): 563.
|
30. |
Yan M, Lewis PL, Shah RN. Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation. Biofabrication, 2018, 10(3): 035010.
|
31. |
黄志强. 当今胆道外科的发展与方向. 中华外科杂志, 2006, 44(23): 1585-1586.
|
32. |
周斌, 张培建. 胆管上皮细胞的生理及其与胆管疾病的相关性. 中国普通外科杂志, 2007, 16(7): 681-683.
|
33. |
Tian L, Deshmukh A, Ye Z, et al. Efficient and controlled generation of 2D and 3D bile duct tissue from human pluripotent stem cell-derived spheroids. Stem Cell Rev Rep, 2016, 12(4): 500-508.
|
34. |
Cardinale V, Wang Y, Carpino G, et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology, 2011, 54(6): 2159-2172.
|
35. |
Carpino G, Cardinale V, Onori P, et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat, 2012, 220(2): 186-199.
|
36. |
Zhou J, Yang Y, Yin X, et al. The compatibility of swine BMDC-derived bile duct endothelial cells with a nanostructured electrospun PLGA material. Int J Artif Organs, 2013, 36(2): 121-130.
|
37. |
陈奕明, 李立, 冉江华, 等. 体外诱导大鼠肝卵圆细胞定向分化为胆管上皮细胞. 中国现代医学杂志, 2014, 24(16): 10-14.
|
38. |
Wu F, Lin Y. Directed differentiation of human pluripotent stem cells into hepatic tissue with gallbladder and bile ducts organoids in vitro. Ann Oncol, 2019, 30 Suppl 4: iv82.
|
39. |
杨扬, 周家华, 殷雪琰, 等. 骨髓间充质干细胞诱导胆管内皮细胞与电纺纳米纤维的生物相容性. 中国组织工程研究, 2015, 19(23): 3736-3743.
|
40. |
Zong C, Wang M, Yang F, et al. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. J Tissue Eng Regen Med, 2017, 11(4): 966-976.
|
41. |
Chen Y, Devalliere J, Bulutoglu B, et al. Repopulation of intrahepatic bile ducts in engineered rat liver grafts. Technology (Singap World Sci), 2019, 7(1-2): 46-55.
|
42. |
Tarassoli SP, Jessop ZM, Al-Sabah A, et al. Skin tissue engineering using 3D bioprinting: An evolving research field. J Plast Reconstr Aesthet Surg, 2018, 71(5): 615-623.
|
43. |
Tysoe OC, Justin AW, Brevini T, et al. Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue. Nat Protoc, 2019, 14(6): 1884-1925.
|
44. |
Li H, Yin Y, Xiang Y, et al. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Biomed Mater, 2020, 15(4): 045004.
|
45. |
Thomas J, Patel S, Troop L, et al. 3D printed model of extrahepatic biliary ducts for biliary stent testing. Materials (Basel), 2020, 13(21): 4788.
|
46. |
Mehrian M, Lambrechts T, Papantoniou I, et al. Computational modeling of human mesenchymal stromal cell proliferation and extra-cellular matrix production in 3D porous scaffolds in a perfusion bioreactor: The effect of growth factors. Front Bioeng Biotechnol, 2020, 8: 376.
|
47. |
Du Y, Khandekar G, Llewellyn J, et al. A bile duct-on-a-chip with organ-level functions. Hepatology, 2020, 71(4): 1350-1363.
|
48. |
Kang Y, Chang J. Channels in a porous scaffold: a new player for vascularization. Regen Med, 2018, 13(6): 705-715.
|