1. |
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018, 14(2): 88-98.
|
2. |
American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care, 2021, 44(Suppl 1): S15-S33.
|
3. |
Ferraz-Bannitz R, Welendorf CR, Coelho PO, et al. Bariatric surgery can acutely modulate ER-stress and inflammation on subcutaneous adipose tissue in non-diabetic patients with obesity. Diabetol Metab Syndr, 2021, 13(1): 19.
|
4. |
Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med, 2014, 370(21): 2002-2013.
|
5. |
Mizandari M, Keshavarz P, Azrumelashvili T, et al. Left gastric artery embolization for obesity treatment: A systematic review and meta-analysis of human and animal studies. Abdom Radiol (NY), 2021 Apr 7. Online ahead of print.
|
6. |
Woźniewska P, Diemieszczyk I, Groth D, et al. The influence of patient’s age on metabolic and bariatric results of laparoscopic sleeve gastrectomy in 2-year observation. BMC Surg, 2020, 20(1): 323.
|
7. |
Brethauer SA, Aminian A, Romero-Talamás H, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg, 2013, 258(4): 628-636.
|
8. |
Hayoz C, Hermann T, Raptis DA, et al. Comparison of metabolic outcomes in patients undergoing laparoscopic Roux-en-Y gastric bypass versus sleeve gastrectomy—A systematic review and meta-analysis of randomised controlled trials. Swiss Med Wkly, 2018, 148: w14633.
|
9. |
Hayashi SY, Faintuch J, Yagi OK, et al. Does Roux-en-Y gastrectomy for gastric cancer influence glucose homeostasis in lean patients? Surg Endosc, 2013, 27(8): 2829-2835.
|
10. |
Zhou D, Jiang X, Jian W, et al. Comparing the effectiveness of total gastrectomy and gastric bypass on glucose metabolism in diabetic rats. Obes Surg, 2016, 26(1): 119-125.
|
11. |
Widjaja J, Dolo PR, Zhang Q, et al. Bypassed and preserved stomach resulted in superior glucose control in Sprague-Dawley rats with streptozotocin-induced diabetes. Sci Rep, 2019, 9(1): 9981.
|
12. |
Meguid MM, Ramos EJ, Suzuki S, et al. A surgical rat model of human Roux-en-Y gastric bypass. J Gastrointest Surg, 2004, 8(5): 621-630.
|
13. |
Taylor DK, Mook DM. Isoflurane waste anesthetic gas concentrations associated with the open-drop method. J Am Assoc Lab Anim Sci, 2009, 48(1): 61-64.
|
14. |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
|
15. |
Strong VE, Wu AW, Selby LV, et al. Differences in gastric cancer survival between the U. S. and China. J Surg Oncol, 2015, 112(1): 31-37.
|
16. |
Braghetto I, Csendes A, Korn O, et al. Laparoscopic resectional gastric bypass in patients with morbid obesity: Experience on 112 consecutive patients. J Gastrointest Surg, 2011, 15(1): 71-80.
|
17. |
Park JY, Kim YJ. Laparoscopic resectional gastric bypass: Initial experience in morbidly obese Korean patients. Surg Today, 2015, 45(8): 1032-1039.
|
18. |
Rehfeld JF, Friis-Hansen L, Goetze JP, et al. The biology of cholecystokinin and gastrin peptides. Curr Top Med Chem, 2007, 7(12): 1154-1165.
|
19. |
Saillan-Barreau C, Dufresne M, Clerc P, et al. Evidence for a functional role of the cholecystokinin-B/gastrin receptor in the human fetal and adult pancreas. Diabetes, 1999, 48(10): 2015-2021.
|
20. |
Rooman I, Lardon J, Bouwens L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes, 2002, 51(3): 686-690.
|
21. |
Téllez N, Joanny G, Escoriza J, et al. Gastrin treatment stimulates β-cell regeneration and improves glucose tolerance in 95% pancreatectomized rats. Endocrinology, 2011, 152(7): 2580-2588.
|
22. |
Sasaki S, Miyatsuka T, Matsuoka TA, et al. Activation of GLP-1 and gastrin signalling induces in vivo reprogramming of pancreatic exocrine cells into beta cells in mice. Diabetologia, 2015, 58(11): 2582-2591.
|
23. |
Bödvarsdóttir TB, Hove KD, Gotfredsen CF, et al. Treatment with a proton pump inhibitor improves glycaemic control in Psammomys obesus, a model of type 2 diabetes. Diabetologia, 2010, 53(10): 2220-2223.
|
24. |
Singh PK, Hota D, Dutta P, et al. Pantoprazole improves glycemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab, 2012, 97(11): E2105-E2108.
|
25. |
Cao Y, Cao X, Liu XM. Expression of cholecystokinin2-receptor in rat and human L cells and the stimulation of glucagon-like peptide-1 secretion by gastrin treatment. Acta Histochem, 2015, 117(2): 205-210.
|
26. |
Sandoval D. CNS GLP-1 regulation of peripheral glucose homeostasis. Physiol Behav, 2008, 94(5): 670-674.
|
27. |
Thaler JP, Cummings DE. Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology, 2009, 150(6): 2518-2525.
|
28. |
Pournaras DJ, Osborne A, Hawkins SC, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg, 2010, 252(6): 966-971.
|
29. |
Buteau J. GLP-1 receptor signaling: Effects on pancreatic beta-cell proliferation and survival. Diabetes Metab, 2008, 34 Suppl 2: S73-S77.
|
30. |
Fosgerau K, Jessen L, Lind Tolborg J, et al. The novel GLP-1-gastrin dual agonist, ZP3022, increases β-cell mass and prevents diabetes in db/db mice. Diabetes Obes Metab, 2013, 15(1): 62-71.
|
31. |
Suarez-Pinzon WL, Power RF, Yan Y, et al. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes, 2008, 57(12): 3281-3288.
|
32. |
Rehfeld JF. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta Physiol (Oxf), 2011, 201(4): 405-411.
|
33. |
Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery. Endocrinology, 2017, 158(12): 4139-4151.
|