Citation: LU Yixun, CHEN Lin. Research progress of circRNA in gastric cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(2): 255-263. doi: 10.7507/1007-9424.202103089 Copy
1. | Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856. |
2. | Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules. FASEB J, 1993, 7(1): 155-160. |
3. | Tang X, Ren H, Guo M, et al. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J, 2021, 19: 910-928. |
4. | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249. |
5. | Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132. |
6. | Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. |
7. | Schmidt CA, Giusto JD, Bao A, et al. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res, 2019, 47(12): 6452-6465. |
8. | Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol, 2014, 32(5): 453-461. |
9. | Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157. |
10. | Lu Z, Filonov GS, Noto JJ, et al. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA, 2015, 21(9): 1554-1565. |
11. | Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1): 134-147. |
12. | Suzuki H, Zuo Y, Wang J, et al. Characterization of RNaseR-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res, 2006, 34(8): e63. doi: 10.1093/nar/gkl151. |
13. | Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777. doi: 10.1371/journal.pgen.1003777. |
14. | Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA, 2014, 20(11): 1666-1670. |
15. | Wang X, Li H, Lu Y, et al. Circular RNAs in human cancer. Front Oncol, 2021, 10: 577118. |
16. | Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308): 835-840. |
17. | Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211. |
18. | Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388. |
19. | Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res, 2013, 73(18): 5609-5612. |
20. | Wen J, Liao J, Liang J, et al. Circular RNA HIPK3: A key circular RNA in a variety of human cancers. Front Oncol, 2020, 10: 773. doi: 10.3389/fonc.2020.00773. |
21. | Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66. |
22. | Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol, 2017, 14(3): 361-369. |
23. | Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J, 2017, 38(18): 1402-1412. |
24. | Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol, 2014, 15(7): 409. doi: 10.1186/s13059-014-0409-z. |
25. | Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37. |
26. | Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs. Mol Cell, 2017, 66(1): 9-21. |
27. | Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(5209): 415-417. |
28. | Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer. Mol Cancer, 2020, 19(1): 30. doi: 10.1186/s12943-020-1135-7. |
29. | Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3): 256-264. |
30. | Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA throughR-loop formation. Nat Plants, 2017, 3: 17053. doi: 10.1038/nplants.2017.53. |
31. | Dong R, Zhang XO, Zhang Y, et al. CircRNA-derived pseudogenes. Cell Res, 2016, 26(6): 747-750. |
32. | Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell, 2012, 149(7): 1622-1634. |
33. | Du WW, Zhang C, Yang W, et al. Identifying and characterizing circRNA-protein interaction. Theranostics, 2017, 7(17): 4183-4191. |
34. | Jie M, Wu Y, Gao M, et al. CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer, 2020, 19(1): 56. doi: 10.1186/s12943-020-01160-2. |
35. | Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019, 21(1): 9-17. |
36. | Enuka Y, Lauriola M, Feldman ME, et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res, 2016, 44(3): 1370-1383. |
37. | Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J, 2011, 30(21): 4414-4422. |
38. | Park OH, Ha H, Lee Y, et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell, 2019, 74(3): 494-507. |
39. | Shi X, Wang B, Feng X, et al. circRNAs and exosomes: A mysterious frontier for human cancer. Mol Ther Nucleic Acids, 2020, 19: 384-392. |
40. | Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet, 2015, 385(9972): 977-1010. |
41. | Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett, 2017, 388: 208-219. |
42. | Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer, 2019, 18(1): 71. doi: 10.1186/s12943-019-0969-3. |
43. | Ouyang Y, Li Y, Huang Y, et al. CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2. J Cell Physiol, 2019, 234(7): 10458-10469. |
44. | Ding L, Zhao Y, Dang S, et al. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer, 2019, 18(1): 45. doi: 10.1186/s12943-019-1006-2. |
45. | Wang S, Tang D, Wang W, et al. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol Cancer, 2019, 18(1): 162. doi: 10.1186/s12943-019-1081-4. |
46. | Zhang J, Hou L, Liang R, et al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer, 2019, 18(1): 80. doi: 10.1186/s12943-019-1015-1. |
47. | Liu J, Song S, Lin S, et al. Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Prolif, 2019, 52(4): e12648. doi: 10.1111/cpr.12648. |
48. | Yang D, Hu Z, Zhang Y, et al. CircHIPK3 promotes the tumorigenesis and development of gastric cancer through miR-637/AKT1 pathway. Front Oncol, 2021, 11: 637761. doi: 10.3389/fonc.2021.637761. |
49. | Wang L, Li B, Yi X, et al. Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β-catenin pathway. Cell Prolif, 2021, 54(3): e12981. doi: 10.1111/cpr.12981. |
50. | Cao J, Zhang X, Xu P, et al. Circular RNA circLMO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/β-catenin pathway. J Exp Clin Cancer Res, 2021, 40(1): 6. doi: 10.1186/s13046-020-01791-9. |
51. | Xie M, Yu T, Jing X, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer, 2020, 19(1): 112. doi: 10.1186/s12943-020-01208-3. |
52. | Zhang Z, Wang C, Zhang Y, et al. CircDUSP16 promotes the tumorigenesis and invasion of gastric cancer by sponging miR-145-5p. Gastric Cancer, 2020, 23(3): 437-448. |
53. | Wang S, Zhang X, Li Z, et al. Circular RNA profile identifies circOSBPL10 as an oncogenic factor and prognostic marker in gastric cancer. Oncogene, 2019, 38(44): 6985-7001. |
54. | Cai J, Chen Z, Wang J, et al. circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling. Cell Death Dis, 2019, 10(8): 576. doi: 10.1038/s41419-019-1814-8. |
55. | Zhang H, Zhu L, Bai M, et al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer, 2019, 144(10): 2501-2515. |
56. | Hong Y, Qin H, Li Y, et al. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J Cell Physiol, 2019, 234(11): 19895-19910. |
57. | Zhang L, Song X, Chen X, et al. Circular RNA circCACTIN promotes gastric cancer progression by sponging miR-331-3p and regulating TGFBR1 expression. Int J Biol Sci, 2019, 15(5): 1091-1103. |
58. | Chen Y, Yang F, Fang E, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ, 2019, 26(7): 1346-1364. |
59. | Xue M, Li G, Fang X, et al. hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int, 2019, 19: 25. doi: 10.1186/s12935-019-0737-x. |
60. | Yang F, Hu A, Li D, et al. Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer, 2019, 18(1): 158. doi: 10.1186/s12943-019-1094-z. |
61. | Sun G, Li Z, He Z, et al. Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J Exp Clin Cancer Res, 2020, 39(1): 246. doi: 10.1186/s13046-020-01758-w. |
62. | Guo X, Dai X, Liu J, et al. Circular RNA circREPS2 acts as a sponge of miR-558 to suppress gastric cancer progression by regulating RUNX3/β-catenin signaling. Mol Ther Nucleic Acids, 2020, 21: 577-591. |
63. | Luo Z, Rong Z, Zhang J, et al. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol Cancer, 2020, 19(1): 86. doi: 10.1186/s12943-020-01203-8. |
64. | Deng G, Mou T, He J, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res, 2020, 39(1): 1. doi: 10.1186/s13046-019-1487-2. |
65. | Rong D, Lu C, Zhang B, et al. CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol Cancer, 2019, 18(1): 25. doi: 10.1186/s12943-019-0958-6. |
66. | Peng L, Sang H, Wei S, et al. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer, 2020, 19(1): 156. doi: 10.1186/s12943-020-01270-x. |
67. | Fang J, Hong H, Xue X, et al. A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett, 2019, 442: 222-232. |
68. | Liu H, Liu Y, Bian Z, et al. Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis. Mol Cancer, 2018, 17(1): 151. doi: 10.1186/s12943-018-0902-1. |
69. | Zhang J, Liu H, Hou L, et al. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer, 2017, 16(1): 151. doi: 10.1186/s12943-017-0719-3. |
70. | Zhang Y, Liu H, Li W, et al. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY), 2017, 9(6): 1585-1594. |
71. | Ma C, Wang X, Yang F, et al. Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol Cancer, 2020, 19(1): 157. doi: 10.1186/s12943-020-01268-5. |
72. | Wei J, Wei W, Xu H, et al. Circular RNA hsa_circRNA_102958 may serve as a diagnostic marker for gastric cancer. Cancer Biomark, 2020, 27(2): 139-145. |
73. | Tang W, Fu K, Sun H, et al. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer, 2018, 17(1): 137. doi: 10.1186/s12943-018-0888-8. |
74. | Li T, Shao Y, Fu L, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl), 2018, 96(1): 85-96. |
75. | Wang F, Li X, Zhao X, et al. Detection of a 5-circRNA signature to improve prognostic prediction in gastric cancer. J Investig Med, 2020, 68(3): 762-769. |
76. | Ma S, Kong S, Gu X, et al. As a biomarker for gastric cancer, circPTPN22 regulates the progression of gastric cancer through the EMT pathway. Cancer Cell Int, 2021, 21(1): 44. doi: 10.1186/s12935-020-01701-1. |
77. | Li P, Chen H, Chen S, et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer, 2017, 116(5): 626-633. |
78. | Zhao Q, Chen S, Li T, et al. Clinical values of circular RNA 0000181 in the screening of gastric cancer. J Clin Lab Anal, 2018, 32(4): e22333. doi: 10.1002/jcla.22333. |
79. | Sun H, Tang W, Rong D, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark, 2018, 21(2): 299-306. |
80. | Rong D, Dong C, Fu K, et al. Upregulation of circ_0066444 promotes the proliferation, invasion, and migration of gastric cancer cells. Onco Targets Ther, 2018, 11: 2753-2761. |
81. | Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA, 2014, 20(12): 1829-1842. |
82. | Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep, 2021, 22(3): e52072. doi: 10.15252/embr.202052072. |
83. | Liu X, Abraham JM, Cheng Y, et al. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids, 2018, 13: 312-321. |
- 1. Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856.
- 2. Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules. FASEB J, 1993, 7(1): 155-160.
- 3. Tang X, Ren H, Guo M, et al. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J, 2021, 19: 910-928.
- 4. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
- 5. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
- 6. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
- 7. Schmidt CA, Giusto JD, Bao A, et al. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res, 2019, 47(12): 6452-6465.
- 8. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol, 2014, 32(5): 453-461.
- 9. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.
- 10. Lu Z, Filonov GS, Noto JJ, et al. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA, 2015, 21(9): 1554-1565.
- 11. Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1): 134-147.
- 12. Suzuki H, Zuo Y, Wang J, et al. Characterization of RNaseR-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res, 2006, 34(8): e63. doi: 10.1093/nar/gkl151.
- 13. Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777. doi: 10.1371/journal.pgen.1003777.
- 14. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA, 2014, 20(11): 1666-1670.
- 15. Wang X, Li H, Lu Y, et al. Circular RNAs in human cancer. Front Oncol, 2021, 10: 577118.
- 16. Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308): 835-840.
- 17. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211.
- 18. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
- 19. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res, 2013, 73(18): 5609-5612.
- 20. Wen J, Liao J, Liang J, et al. Circular RNA HIPK3: A key circular RNA in a variety of human cancers. Front Oncol, 2020, 10: 773. doi: 10.3389/fonc.2020.00773.
- 21. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66.
- 22. Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol, 2017, 14(3): 361-369.
- 23. Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J, 2017, 38(18): 1402-1412.
- 24. Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol, 2014, 15(7): 409. doi: 10.1186/s13059-014-0409-z.
- 25. Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37.
- 26. Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs. Mol Cell, 2017, 66(1): 9-21.
- 27. Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(5209): 415-417.
- 28. Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer. Mol Cancer, 2020, 19(1): 30. doi: 10.1186/s12943-020-1135-7.
- 29. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3): 256-264.
- 30. Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA throughR-loop formation. Nat Plants, 2017, 3: 17053. doi: 10.1038/nplants.2017.53.
- 31. Dong R, Zhang XO, Zhang Y, et al. CircRNA-derived pseudogenes. Cell Res, 2016, 26(6): 747-750.
- 32. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell, 2012, 149(7): 1622-1634.
- 33. Du WW, Zhang C, Yang W, et al. Identifying and characterizing circRNA-protein interaction. Theranostics, 2017, 7(17): 4183-4191.
- 34. Jie M, Wu Y, Gao M, et al. CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer, 2020, 19(1): 56. doi: 10.1186/s12943-020-01160-2.
- 35. Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019, 21(1): 9-17.
- 36. Enuka Y, Lauriola M, Feldman ME, et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res, 2016, 44(3): 1370-1383.
- 37. Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J, 2011, 30(21): 4414-4422.
- 38. Park OH, Ha H, Lee Y, et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell, 2019, 74(3): 494-507.
- 39. Shi X, Wang B, Feng X, et al. circRNAs and exosomes: A mysterious frontier for human cancer. Mol Ther Nucleic Acids, 2020, 19: 384-392.
- 40. Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet, 2015, 385(9972): 977-1010.
- 41. Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett, 2017, 388: 208-219.
- 42. Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer, 2019, 18(1): 71. doi: 10.1186/s12943-019-0969-3.
- 43. Ouyang Y, Li Y, Huang Y, et al. CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2. J Cell Physiol, 2019, 234(7): 10458-10469.
- 44. Ding L, Zhao Y, Dang S, et al. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer, 2019, 18(1): 45. doi: 10.1186/s12943-019-1006-2.
- 45. Wang S, Tang D, Wang W, et al. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol Cancer, 2019, 18(1): 162. doi: 10.1186/s12943-019-1081-4.
- 46. Zhang J, Hou L, Liang R, et al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer, 2019, 18(1): 80. doi: 10.1186/s12943-019-1015-1.
- 47. Liu J, Song S, Lin S, et al. Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Prolif, 2019, 52(4): e12648. doi: 10.1111/cpr.12648.
- 48. Yang D, Hu Z, Zhang Y, et al. CircHIPK3 promotes the tumorigenesis and development of gastric cancer through miR-637/AKT1 pathway. Front Oncol, 2021, 11: 637761. doi: 10.3389/fonc.2021.637761.
- 49. Wang L, Li B, Yi X, et al. Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β-catenin pathway. Cell Prolif, 2021, 54(3): e12981. doi: 10.1111/cpr.12981.
- 50. Cao J, Zhang X, Xu P, et al. Circular RNA circLMO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/β-catenin pathway. J Exp Clin Cancer Res, 2021, 40(1): 6. doi: 10.1186/s13046-020-01791-9.
- 51. Xie M, Yu T, Jing X, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer, 2020, 19(1): 112. doi: 10.1186/s12943-020-01208-3.
- 52. Zhang Z, Wang C, Zhang Y, et al. CircDUSP16 promotes the tumorigenesis and invasion of gastric cancer by sponging miR-145-5p. Gastric Cancer, 2020, 23(3): 437-448.
- 53. Wang S, Zhang X, Li Z, et al. Circular RNA profile identifies circOSBPL10 as an oncogenic factor and prognostic marker in gastric cancer. Oncogene, 2019, 38(44): 6985-7001.
- 54. Cai J, Chen Z, Wang J, et al. circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling. Cell Death Dis, 2019, 10(8): 576. doi: 10.1038/s41419-019-1814-8.
- 55. Zhang H, Zhu L, Bai M, et al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer, 2019, 144(10): 2501-2515.
- 56. Hong Y, Qin H, Li Y, et al. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J Cell Physiol, 2019, 234(11): 19895-19910.
- 57. Zhang L, Song X, Chen X, et al. Circular RNA circCACTIN promotes gastric cancer progression by sponging miR-331-3p and regulating TGFBR1 expression. Int J Biol Sci, 2019, 15(5): 1091-1103.
- 58. Chen Y, Yang F, Fang E, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ, 2019, 26(7): 1346-1364.
- 59. Xue M, Li G, Fang X, et al. hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int, 2019, 19: 25. doi: 10.1186/s12935-019-0737-x.
- 60. Yang F, Hu A, Li D, et al. Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer, 2019, 18(1): 158. doi: 10.1186/s12943-019-1094-z.
- 61. Sun G, Li Z, He Z, et al. Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J Exp Clin Cancer Res, 2020, 39(1): 246. doi: 10.1186/s13046-020-01758-w.
- 62. Guo X, Dai X, Liu J, et al. Circular RNA circREPS2 acts as a sponge of miR-558 to suppress gastric cancer progression by regulating RUNX3/β-catenin signaling. Mol Ther Nucleic Acids, 2020, 21: 577-591.
- 63. Luo Z, Rong Z, Zhang J, et al. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol Cancer, 2020, 19(1): 86. doi: 10.1186/s12943-020-01203-8.
- 64. Deng G, Mou T, He J, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res, 2020, 39(1): 1. doi: 10.1186/s13046-019-1487-2.
- 65. Rong D, Lu C, Zhang B, et al. CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol Cancer, 2019, 18(1): 25. doi: 10.1186/s12943-019-0958-6.
- 66. Peng L, Sang H, Wei S, et al. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer, 2020, 19(1): 156. doi: 10.1186/s12943-020-01270-x.
- 67. Fang J, Hong H, Xue X, et al. A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett, 2019, 442: 222-232.
- 68. Liu H, Liu Y, Bian Z, et al. Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis. Mol Cancer, 2018, 17(1): 151. doi: 10.1186/s12943-018-0902-1.
- 69. Zhang J, Liu H, Hou L, et al. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer, 2017, 16(1): 151. doi: 10.1186/s12943-017-0719-3.
- 70. Zhang Y, Liu H, Li W, et al. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY), 2017, 9(6): 1585-1594.
- 71. Ma C, Wang X, Yang F, et al. Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol Cancer, 2020, 19(1): 157. doi: 10.1186/s12943-020-01268-5.
- 72. Wei J, Wei W, Xu H, et al. Circular RNA hsa_circRNA_102958 may serve as a diagnostic marker for gastric cancer. Cancer Biomark, 2020, 27(2): 139-145.
- 73. Tang W, Fu K, Sun H, et al. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer, 2018, 17(1): 137. doi: 10.1186/s12943-018-0888-8.
- 74. Li T, Shao Y, Fu L, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl), 2018, 96(1): 85-96.
- 75. Wang F, Li X, Zhao X, et al. Detection of a 5-circRNA signature to improve prognostic prediction in gastric cancer. J Investig Med, 2020, 68(3): 762-769.
- 76. Ma S, Kong S, Gu X, et al. As a biomarker for gastric cancer, circPTPN22 regulates the progression of gastric cancer through the EMT pathway. Cancer Cell Int, 2021, 21(1): 44. doi: 10.1186/s12935-020-01701-1.
- 77. Li P, Chen H, Chen S, et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer, 2017, 116(5): 626-633.
- 78. Zhao Q, Chen S, Li T, et al. Clinical values of circular RNA 0000181 in the screening of gastric cancer. J Clin Lab Anal, 2018, 32(4): e22333. doi: 10.1002/jcla.22333.
- 79. Sun H, Tang W, Rong D, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark, 2018, 21(2): 299-306.
- 80. Rong D, Dong C, Fu K, et al. Upregulation of circ_0066444 promotes the proliferation, invasion, and migration of gastric cancer cells. Onco Targets Ther, 2018, 11: 2753-2761.
- 81. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA, 2014, 20(12): 1829-1842.
- 82. Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep, 2021, 22(3): e52072. doi: 10.15252/embr.202052072.
- 83. Liu X, Abraham JM, Cheng Y, et al. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids, 2018, 13: 312-321.