1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology, 2015, 82(3-4): 142-152.
|
3. |
Choi J, Gyamfi J, Jang H, et al. The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol, 2018, 33(2): 133-145.
|
4. |
Lim B, Woodward WA, Wang X, et al. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer, 2018, 18(8): 485-499.
|
5. |
Wu Q, Li J, Li Z, et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J Exp Clin Cancer Res, 2019, 38(1): 223.
|
6. |
Emens LA. Breast cancer immunotherapy: facts and hopes. Clin Cancer Res, 2018, 24(3): 511-520.
|
7. |
Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther, 2012, 12(12): 1597-1611.
|
8. |
Shi T, Ma Y, Yu L, et al. Cancer immunotherapy: a focus on the regulation of immune checkpoints. Int J Mol Sci, 2018, 19(5): 1389.
|
9. |
Basu A, Ramamoorthi G, Jia Y, et al. Immunotherapy in breast cancer: current status and future directions. Adv Cancer Res, 2019, 143: 295-349.
|
10. |
Gasser S, Lim LHK, Cheung FSG. The role of the tumour microenvironment in immunotherapy. Endocr Relat Cancer, 2017, 24(12): T283-T295.
|
11. |
Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep, 2017, 18(1): 248-262.
|
12. |
Liu J, Meng H, Nie S, et al. Identification of a prognostic signature of epithelial ovarian cancer based on tumor immune microenvironment exploration. Genomics, 2020, 112(6): 4827-4841.
|
13. |
Song Q, Shang J, Yang Z, et al. Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. J Transl Med, 2019, 17(1): 70.
|
14. |
Kelley EF, Snyder EM, Johnson BD. Influence of beta-1 adrenergic receptor genotype on cardiovascular response to exercise in healthy subjects. Cardiol Res, 2018, 9(6): 343-349.
|
15. |
Işeri OD, Sahin FI, Terzi YK, et al. Beta-adrenoreceptor antagonists reduce cancer cell proliferation, invasion, and migration. Pharm Biol, 2014, 52(11): 1374-1381.
|
16. |
Wang J, Zhang X, Li J, et al. ADRB1 was identified as a potential biomarker for breast cancer by the co-analysis of tumor mutational burden and immune infiltration. Aging (Albany NY), 2020, 13(1): 351-363.
|
17. |
Yan J, Smyth MJ, Teng MWL. Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb Perspect Biol, 2018, 10(7): a028530.
|
18. |
Sun R, Jia F, Liang Y, et al. Interaction analysis of IL-12A and IL-12B polymorphisms with the risk of colorectal cancer. Tumour Biol, 2015, 36(12): 9295-9301.
|
19. |
Kaarvatn MH, Vrbanec J, Kulic A, et al. Single nucleotide polymorphism in the interleukin 12B gene is associated with risk for breast cancer development. Scand J Immunol, 2012, 76(3): 329-335.
|
20. |
Chen X, Han S, Wang S, et al. Interactions of IL-12A and IL-12B polymorphisms on the risk of cervical cancer in Chinese women. Clin Cancer Res, 2009, 15(1): 400-405.
|
21. |
Shi S, Zhong D, Xiao Y, et al. Syndecan-1 knockdown inhibits glioma cell proliferation and invasion by deregulating a c-src/FAK-associated signaling pathway. Oncotarget, 2017, 8(25): 40922-40934.
|
22. |
Cui X, Jing X, Yi Q, et al. Clinicopathological and prognostic significance of SDC1 overexpression in breast cancer. Oncotarget, 2017, 8(67): 111444-111455.
|
23. |
Ziegler SF, Artis D. Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol, 2010, 11(4): 289-293.
|
24. |
Kuan EL, Ziegler SF. A tumor-myeloid cell axis, mediated via the cytokines IL-1α and TSLP, promotes the progression of breast cancer. Nat Immunol, 2018, 19(4): 366-374.
|
25. |
Liu Y, Cao M, Cai Y, et al. Dissecting the role of the FGF19-FGFR4 signaling pathway in cancer development and progression. Front Cell Dev Biol, 2020, 8: 95.
|
26. |
Sawey ET, Chanrion M, Cai C, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell, 2011, 19(3): 347-358.
|
27. |
Kagawa Y, Umaru BA, Ariful I, et al. Role of FABP7 in tumor cell signaling. Adv Biol Regul, 2019, 71: 206-218.
|
28. |
Ma R, Wang L, Yuan F, et al. FABP7 promotes cell proliferation and survival in colon cancer through MEK/ERK signaling pathway. Biomed Pharmacother, 2018, 108: 119-129.
|
29. |
Cordero A, Kanojia D, Miska J, et al. FABP7 is a key metabolic regulator in HER2+ breast cancer brain metastasis. Oncogene, 2019, 38(37): 6445-6460.
|
30. |
Vence L, Bucktrout SL, Fernandez Curbelo I, et al. Charac-terization and comparison of GITR expression in solid tumors. Clin Cancer Res, 2019, 25(21): 6501-6510.
|
31. |
Buzzatti G, Dellepiane C, Del Mastro L. New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open, 2020, 4(Suppl 3): e000738.
|
32. |
Fabbi M, Carbotti G, Ferrini S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm, 2017, 2017: 3958069.
|
33. |
Lu D, Zhou X, Yao L, et al. Clinical implications of the interleukin 27 serum level in breast cancer. J Investig Med, 2014, 62(3): 627-631.
|
34. |
Xie P, Ma Y, Yu S, et al. Development of an immune-related prognostic signature in breast cancer. Front Genet, 2020, 10: 1390.
|
35. |
Xu W, Qian J, Zeng F, et al. Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. J Exp Clin Cancer Res, 2019, 38(1): 114.
|
36. |
Sammarco G, Varricchi G, Ferraro V, et al. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. Int J Mol Sci, 2019, 20(9): 2106.
|