1. |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Borniger JC. Central regulation of breast cancer growth and metastasis. J Cancer Metastasis Treat, 2019, 5: 23.
|
3. |
Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med, 2013, 274(2): 113-126.
|
4. |
Mboge MY, Mahon BP, McKenna R, et al. Carbonic anhydrases: role in pH control and cancer. Metabolites, 2018, 8(1): 19.
|
5. |
Alterio V, Monti SM, De Simone G. Thermal-stable carbonic anhydrases: a structural overview. Subcell Biochem, 2014, 75: 387-404.
|
6. |
梁嘉恩, 汪艳. Yes 相关蛋白参与肝脏疾病作用机制的研究进展. 中华肝脏病杂志, 2019, 27(7): 572-576.
|
7. |
Wang C, Davis JS. At the center of cervical carcinogenesis: synergism between high-risk HPV and the hyperactivated YAP1. Mol Cell Oncol, 2019, 6(5): e1612677.
|
8. |
Kandasamy S, Adhikary G, Rorke EA, et al. The YAP1 signaling inhibitors, verteporfin and CA3, suppress the mesothelioma cancer stem cell phenotype. Mol Cancer Res, 2020, 18(3): 343-351.
|
9. |
Pereira CM, de Carvalho AC, da Silva FR, et al. In vitro and in silico validation of CA3 and FHL1 downregulation in oral cancer. BMC Cancer, 2018, 18(1): 193.
|
10. |
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res, 2017, 45(W1): W98-W102.
|
11. |
Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res, 2017, 77(21): e108-e110.
|
12. |
Györffy B, Lanczky A, Eklund AC, et al. An online survival analysis tool to rapidly assess the effect of 22 277 genes on breast cancer prognosis using microarray data of 1 809 patients. Breast Cancer Res Treat, 2010, 123(3): 725-731.
|
13. |
Jézéquel P, Campone M, Gouraud W, et al. bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res Treat, 2012, 131(3): 765-775.
|
14. |
Mizuno H, Kitada K, Nakai K, et al. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics, 2009, 2: 18.
|
15. |
Vasaikar SV, Straub P, Wang J, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res, 2018, 46(D1): D956-D963.
|
16. |
Oulas A, Minadakis G, Zachariou M, et al. Systems bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief Bioinform, 2019, 20(3): 806-824.
|
17. |
Penault-Llorca F, Radosevic-Robin N. Ki67 assessment in breast cancer: an update. Pathology, 2017, 49(2): 166-171.
|
18. |
Yen MC, Huang YC, Kan JY, et al. S100B expression in breast cancer as a predictive marker for cancer metastasis. Int J Oncol, 2018, 52(2): 433-440.
|
19. |
Yogosawa S, Nakayama J, Nishi M, et al. Carbonic anhydrase 13 suppresses bone metastasis in breast cancer. Cancer Treat Res Commun, 2021, 27: 100332.
|
20. |
Beniaminov AD, Puzanov GA, Krasnov GS, et al. Deep sequencing revealed a CpG methylation pattern associated with ALDH1L1 suppression in breast cancer. Front Genet, 2018, 9: 169.
|
21. |
Nunziata C, Polo A, Sorice A, et al. Structural analysis of human SEPHS2 protein, a selenocysteine machinery component, over-expressed in triple negative breast cancer. Sci Rep, 2019, 9(1): 16131.
|
22. |
Synnott NC, Madden SF, Bykov VJN, et al. The mutant p53-targeting compound APR-246 induces ROS-modulating genes in breast cancer cells. Transl Oncol, 2018, 11(6): 1343-1349.
|
23. |
Liu H, Ma Y, He HW, et al. SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast cancer cells. Autophagy, 2015, 11(12): 2323-2334.
|
24. |
Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett, 2020, 470: 126-133.
|
25. |
Basu A, Ramamoorthi G, Jia Y, et al. Immunotherapy in breast cancer: Current status and future directions. Adv Cancer Res, 2019, 143: 295-349.
|
26. |
Porcu M, De Silva P, Solinas C, et al. Immunotherapy associated pulmonary toxicity: biology behind clinical and radiological features. Cancers (Basel), 2019, 11(3): 305.
|
27. |
Birsoy K, Possemato R, Lorbeer FK, et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 2014, 508(7494): 108-112.
|
28. |
Sica V, Bravo-San Pedro JM, Stoll G, et al. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int J Cancer, 2020, 146(1): 10-17.
|
29. |
Jiang S. Mitochondrial oxidative phosphorylation is linked to T-cell exhaustion. Aging (Albany NY), 2020, 12(17): 16665-16666.
|
30. |
Song S, Xie M, Scott AW, et al. A Novel YAP1 inhibitor targets CSC-enriched radiation-resistant cells and exerts strong antitumor activity in esophageal adenocarcinoma. Mol Cancer Ther, 2018, 17(2): 443-454.
|
31. |
邓明星. YAP1 抑制剂 CA3 对非小细胞型肺癌和淋巴细胞的影响. 锦州: 锦州医科大学, 2020.
|
32. |
马芳. JSI-124 与 YAP1 抑制剂 CA3 联合用药对结肠癌细胞系和淋巴细胞的影响. 锦州: 锦州医科大学, 2020.
|