1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Villanueva A. Hepatocellular carcinoma. N Engl J Med, 2019, 380(15): 1450-1462.
|
3. |
Mu D, Qin F, Li B, et al. Identification of the sixth complement component as potential key genes in hepatocellular carcinoma via eioinformatics analysis. Biomed Res Int, 2020, 2020: 7042124.
|
4. |
Liu X, Xia S, Zhang Z, et al. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov, 2021, 20(5): 384-405.
|
5. |
Xia X, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis, 2019, 10(9): 650. doi: 10.1038/s41419-019-1883-8.
|
6. |
Xu YJ, Zheng L, Hu YW, et al. Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta, 2018, 476: 28-37.
|
7. |
Wu J, Lin S, Wan B, et al. Pyroptosis in liver disease: new insights into disease mechanisms. Aging Dis, 2019, 10(5): 1094-1108.
|
8. |
Pirzada RH, Javaid N, Choi S. The roles of the NLRP3 inflammasome in neurodegenerative and metabolic diseases and in relevant advanced therapeutic interventions. Genes (Basel), 2020, 11(2): 131. doi: 10.3390/genes11020131.
|
9. |
Zhou CB, Fang JY. The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection. Biochim Biophys Acta Rev Cancer, 2019, 1872(1): 1-10.
|
10. |
Wang M, Jiang S, Zhang Y, et al. The multifaceted roles of pyroptotic cell death pathways in cancer. Cancers (Basel), 2019, 11(9): 1313. doi: 10.3390/cancers11091313.
|
11. |
Zhang Y, Yang H, Sun M, et al. Alpinumisoflavone suppresses hepatocellular carcinoma cell growth and metastasis via NLRP3 inflammasome-mediated pyroptosis. Pharmacol Rep, 2020, 72(5): 1370-1382.
|
12. |
Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res, 2019, 47(W1): W556-W560.
|
13. |
Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep, 2021, 11(1): 6047. doi: 10.1038/s41598-021-84787-5.
|
14. |
Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res, 2018, 46(W1): W60-W64.
|
15. |
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 2019, 10(1): 1523. doi: 10.1038/s41467-019-09234-6.
|
16. |
Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res, 2017, 77(21): e108-e110. doi: 10.1158/0008-5472.CAN-17-0307.
|
17. |
Ru B, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics, 2019, 35(20): 4200-4202.
|
18. |
Gao YX, Yang TW, Yin JM, et al. Progress and prospects of biomarkers in primary liver cancer (review). Int J Oncol, 2020, 57(1): 54-66.
|
19. |
Zhang G, Kang Z, Mei H, et al. Promising diagnostic and prognostic value of six genes in human hepatocellular carcinoma. Am J Transl Res, 2020, 12(4): 1239-1254.
|
20. |
Song L, Pei L, Yao S, et al. NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci, 2017, 11: 63. doi: 10.3389/fncel.2017.00063.
|
21. |
Shen HH, Yang YX, Meng X, et al. NLRP3: a promising therapeutic target for autoimmune diseases. Autoimmun Rev, 2018, 17(7): 694-702.
|
22. |
Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol, 2019, 67: 311-318.
|
23. |
Pezuk JA. Pyroptosis in combinatorial treatment to improve cancer patients’ outcome, is that what we want? EBioMedicine, 2019, 41: 17-18.
|
24. |
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610): 153-158.
|
25. |
Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116.
|
26. |
Kuang S, Zheng J, Yang H, et al. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc Natl Acad Sci U S A, 2017, 114(40): 10642-10647.
|
27. |
Aglietti RA, Dueber EC. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol, 2017, 38(4): 261-271.
|
28. |
Chen X, He WT, Hu L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res, 2016, 26(9): 1007-1020.
|
29. |
黄康, 彭贵主. 基于生物信息学分析肝细胞癌的核心基因. 中国普外基础与临床杂志, 2020, 27(11): 1357-1364.
|
30. |
Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity, 2018, 48(4): 812-830. e14. doi: 10.1016/j.immuni.2018.03.023.
|