1. |
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314.
|
2. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
3. |
Ahmed O, Pillai A. Hepatocellular carcinoma: a contemporary approach to locoregional therapy. Am J Gastroenterol, 2020, 115(11): 1733-1736.
|
4. |
Elkhenany H, Shekshek A, Abdel-Daim M, et al. Stem cell therapy for hepatocellular carcinoma: future perspectives. Adv Exp Med Biol, 2020, 1237: 97-119.
|
5. |
何玲华, 刘凯敏, 佟虹兴, 等. 肝细胞肝癌免疫检查点阻断治疗疗效相关生物标志物的研究进展. 中国普外基础与临床杂志, 2022, 29(1): 112-117.
|
6. |
Ming Y, Li B, Fu R, et al. Bovine serum albumin nanoparticle-mediated delivery of sorafenib for improving hepatocellular carcinoma therapy. J Nanosci Nanotechnol, 2021, 21(10): 5075-5082.
|
7. |
Wang L, He T, Liu J, et al. Pan-cancer analysis reveals tumor-associated macrophage communication in the tumor microenvironment. Exp Hematol Oncol, 2021, 10(1): 31. doi: 10.1186/s40164-021-00226-1 .
|
8. |
Mu X, Li Y, Fan GC. Tissue-resident macrophages in the control of infection and resolution of inflammation. Shock, 2021, 55(1): 14-23.
|
9. |
徐洋, 麻勇. Kupffer细胞在肝脏疾病中的研究进展. 中国普外基础与临床杂志, 2021, 28(5): 673-677.
|
10. |
郭世朋, 张文锋, 龚建平. Kupffer 细胞起源及其免疫学功能的研究进展. 生理科学进展, 2016, 47(1): 57-60.
|
11. |
Avila MA, Berasain C. Targeting CCL2/CCR2 in tumor-infiltrating macrophages: a tool emerging out of the box against hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol, 2019, 7(2): 293-294.
|
12. |
陆进, 杨月, 俞鹏, 等. 肝细胞癌组织CC趋化因子配体23(CCL23)表达的生物信息学分析及意义. 细胞与分子免疫学杂志, 2019, 35(10): 903-909.
|
13. |
Lu C, Rong D, Zhang B, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer, 2019, 18(1): 130. doi: 10.1186/s12943-019-1047-6 .
|
14. |
Wang YR, Zhang XN, Meng FG, et al. Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics-induced toxic responses. Toxicol Mech Methods, 2021, 31(5): 334-342.
|
15. |
An Y, Liu F, Chen Y, et al. Crosstalk between cancer-associated fibroblasts and immune cells in cancer. J Cell Mol Med, 2020, 24(1): 13-24.
|
16. |
Gok Yavuz B, Gunaydin G, Gedik ME, et aL. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep, 2019, 9(1): 3172. doi: 10.1038/s41598-019-39553-z.
|
17. |
中华预防医学会肝胆胰疾病预防与控制专业委员会, 中国研究型医院学会肝病专业委员会, 中华医学会肝病学分会, 等. 原发性肝癌的分层筛查与监测指南(2020版). 中华肿瘤防治杂志, 2021, 28(2): 83-99.
|
18. |
Kitano Y, Okabe H, Yamashita YI, et al. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br J Cancer, 2018, 118(2): 171-180.
|
19. |
Petty AJ, Li A, Wang X, et al. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J Clin Invest, 2019, 129(12): 5151-5162.
|
20. |
Zhang P, Zhang Y, Wang L, et al. Tumor-regulated macrophage type 2 differentiation promotes immunosuppression in laryngeal squamous cell carcinoma. Life Sci, 2021, 267: 118798. doi: 10.1016/j.lfs.2020.118798.
|
21. |
Zong Z, Zou J, Mao R, et al. M1 macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1β signaling. Front Immunol, 2019, 10: 1643. doi: 10.3389/fimmu.2019.01643.
|
22. |
Russo M, Giavazzi R. Anti-angiogenesis for cancer: current status and prospects. Thromb Res, 2018, 164 Suppl 1: S3-S6.
|
23. |
Goradel NH, Mohammadi N, Haghi-Aminjan H, et al. Regulation of tumor angiogenesis by microRNAs: state of the art. J Cell Physiol, 2019, 234(2): 1099-1110.
|
24. |
Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer, 2017, 16(1): 4. doi: 10.1186/s12943-016-0572-9.
|
25. |
Zhang Y, Wang S, Liu Z, et al. Increased Six1 expression in macrophages promotes hepatocellular carcinoma growth and invasion by regulating MMP-9. J Cell Mol Med, 2019, 23(7): 4523-4533.
|
26. |
Lin Q , Zhou CR , Bai MJ, et al. Exosome-mediated miRNA delivery promotes liver cancer EMT and metastasis. Am J Transl Res, 2020, 12(3): 1080-1095.
|
27. |
Suarez-Carmona M, Lesage J, Cataldo D, et al. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol, 2017, 11(7): 805-823.
|
28. |
Umansky V, Adema GJ, Baran J, et al. Interactions among myeloid regulatory cells in cancer. Cancer Immunol Immunother, 2019, 68(4): 645-660.
|
29. |
Wang H, Wang X, Li X, et al. CD68+HLA–DR+ M1-like macrophages promote motility of HCC cells via NF-κB/FAK pathway. Cancer Letters, 2014, 345(1): 91-99.
|
30. |
Teng KY, Han J, Zhang X, et al. Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther, 2017, 16(2): 312-322.
|
31. |
Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 2017, 66(1): 157-167.
|
32. |
Li X, Bu W, Meng L, et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp Cell Res, 2019, 378(2): 131-138.
|
33. |
Yang J, Zhang L, Jiang Z, et al. TCF12 promotes the tumorigenesis and metastasis of hepatocellular carcinoma via upregulation of CXCR4 expression. Theranostics, 2019, 9(20): 5810-5827.
|
34. |
Quintana E, Schulze CJ, Myers DR, et al. Allosteric inhibition of SHP2 stimulates antitumor immunity by transforming the immunosuppressive environment. Cancer Res, 2020, 80(13): 2889-2902.
|
35. |
Belgiovine C, Bello E, Liguori M, et al. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br J Cancer, 2017, 117(5): 628-638.
|
36. |
Furudate S, Fujimura T, Kakizaki A, et al. Tumor-associated M2 macrophages in mycosis fungoides acquire immunomodulatory function by interferon alpha and interferon gamma. J Dermatol Sci, 2016, 83(3): 182-189.
|
37. |
Zhang Z, Zhu Y, Xu D, et al. IFN-α facilitates the effect of sorafenib via shifting the M2-like polarization of TAM in hepatocellular carcinoma. Am J Transl Res, 2021, 13(1): 301-313.
|
38. |
Chen J, Zheng DX, Yu XJ, et al. Macrophages induce CD47 upregulation via IL-6 and correlate with poor survival in hepatocellular carcinoma patients. Oncoimmunology, 2019, 8(11): e1652540. doi: 10.1080/2162402X.2019.1652540.
|
39. |
Kim H, Bang S, Jee S, et al. Clinicopathological significance of CD47 expression in hepatocellular carcinoma. J Clin Pathol, 2021, 74(2): 111-115.
|
40. |
Lo J, Lau EY, So FT, et al. Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma. Liver Int, 2016, 36(5): 737-745.
|
41. |
de Graaff P, Govers C, Wichers HJ, et al. Consumption of β-glucans to spice up T cell treatment of tumors: a review. Expert Opin Biol Ther, 2018, 18(10): 1023-1040.
|