- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China;
Citation: WU Yingke, WANG Weixing. Research progress of pathogenesis, diagnosis and treatment of sarcopenia in liver cirrhosis. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(4): 545-550. doi: 10.7507/1007-9424.202105079 Copy
1. | Buchard B, Boirie Y, Cassagnes L, et al. Assessment of malnutrition, sarcopenia and frailty in patients with cirrhosis: which tools should we use in clinical practice? Nutrients, 2020, 12(1): 186. doi: 10.3390/nu12010186. |
2. | Mauro E, Crespo G, Martinez-Garmendia A, et al. Cystatin C and sarcopenia predict acute on chronic liver failure development and mortality in patients on the liver transplant waiting list. Transplantation, 2020, 104(7): e188-e198. doi: 10.1097/TP.0000000000003222. |
3. | Bojko M. Causes of sarcopenia in liver cirrhosis. Clin Liver Dis (Hoboken), 2019, 14(5): 167-170. |
4. | Sinclair M. Controversies in diagnosing sarcopenia in cirrhosis-moving from research to clinical practice. Nutrients, 2019, 11(10): 2454. doi: 10.3390/nu11102454. |
5. | Ooi PH, Hager A, Mazurak VC, et al. Sarcopenia in chronic liver disease: impact on outcomes. Liver Transpl, 2019, 25(9): 1422-1438. |
6. | Koo BK, Kim D, Joo SK, et al. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J Hepatol, 2017, 66(1): 123-131. |
7. | Welch N, Dasarathy J, Runkana A, et al. Continued muscle loss increases mortality in cirrhosis: impact of aetiology of liver disease. Liver Int, 2020, 40(5): 1178-1188. |
8. | Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, et al. Inclusion of sarcopenia within MELD (MELD-sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol, 2015, 6(7): e102. doi: 10.1038/ctg.2015.31. |
9. | van Vugt JLA, Alferink LJM, Buettner S, et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: a competing risk analysis in a national cohort. J Hepatol, 2018, 68(4): 707-714. |
10. | Bunchorntavakul C, Reddy KR. Review article: malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment Pharmacol Ther, 2020, 51(1): 64-77. |
11. | Meyer F, Bannert K, Wiese M, et al. Molecular mechanism contributing to malnutrition and sarcopenia in patients with liver cirrhosis. Int J Mol Sci, 2020, 21(15): 5357. doi: 10.3390/ijms21155357. |
12. | Nishikawa H, Yoh K, Enomoto H, et al. Sarcopenia and frailty in chronic liver damage: common and different points. In Vivo, 2020, 34(5): 2549-2559. |
13. | Qiu J, Thapaliya S, Runkana A, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism. Proc Natl Acad Sci USA, 2013, 110(45): 18162-18167. |
14. | McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90. |
15. | Nishikawa H, Enomoto H, Ishii A, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle, 2017, 8(6): 915-925. |
16. | Oh S, Lee J. Sarcopenia and blood myokine levels as prognostic biomarkers in patients with liver cirrhosis or hepatocellular carcinoma. Clin Mol Hepatol, 2020, 26(4): 476-479. |
17. | Dasarathy S, Hatzoglou M. Hyperammonemia and proteostasis in cirrhosis. Curr Opin Clin Nutr Metab Care, 2018, 21(1): 30-36. |
18. | Davuluri G, Welch N, Sekar J, et al. Activated protein phosphatase 2A disrupts nutrient sensing balance between mechanistic target of rapamycin complex 1 and adenosine monophosphate-activated protein kinase, causing sarcopenia in alcohol-associated liver disease. Hepatology, 2021, 73(5): 1892-1908. |
19. | Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol, 2016, 65(6): 1232-1244. |
20. | Butterworth RF. L-ornithine L-aspartate for the treatment of sarcopenia in chronic liver disease: the taming of a vicious cycle. Can J Gastroenterol Hepatol, 2019, 2019: 8182195. doi: 10.1155/2019/8182195. |
21. | Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int, 2018, 12(4): 377-386. |
22. | Jindal A, Jagdish RK. Sarcopenia: ammonia metabolism and hepatic encephalopathy. Clin Mol Hepatol, 2019, 25(3): 270-279. |
23. | Sinclair M, Grossmann M, Hoermann R, et al. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol, 2016, 65(5): 906-913. |
24. | Kovacheva EL, Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology, 2010, 151(2): 628-638. |
25. | Campos F, Abrigo J, Aguirre F, et al. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch, 2018, 470(10): 1503-1519. |
26. | Zhang J, Yu Y, Wang J. Protein nutritional support: the classical and potential new mechanisms in the prevention and therapy of sarcopenia. J Agric Food Chem, 2020, 68(14): 4098-4108. |
27. | Qiu J, Tsien C, Thapalaya S, et al. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab, 2012, 303(8): E983-E993. doi: 10.1152/ajpendo.00183.2012. |
28. | Nóbrega SR, Chachá SGF, Libardi CA. Resistance training combined with blood flow restriction in cirrhosis: study protocol for a randomized controlled trial. Trials, 2020, 21(1): 446. doi: 10.1186/s13063-020-04410-2. |
29. | Aamann L, Dam G, Borre M, et al. Resistance training increases muscle strength and muscle size in patients with liver cirrhosis. Clin Gastroenterol Hepatol, 2020, 18(5): 1179-1187. |
30. | 贺昆, 胡轩, 姚佳. 肝硬化合并营养不良患者的肠道菌群特征分析. 中华临床营养杂志, 2020, 28(3): 165-169. |
31. | Shimizu Y. Gut microbiota in common elderly diseases affecting activities of daily living. World J Gastroenterol, 2018, 24(42): 4750-4758. |
32. | Walsh ME, Bhattacharya A, Sataranatarajan K, et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell, 2015, 14(6): 957-970. |
33. | Hernández MAG, Canfora EE, Jocken JWE, et al. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients, 2019, 11(8): 1943. doi: 10.3390/nu11081943. |
34. | Nishikawa H, Enomoto H, Nishiguchi S, et al. Liver cirrhosis and sarcopenia from the viewpoint of dysbiosis. Int J Mol Sci, 2020, 21(15): 5254. doi: 10.3390/ijms21155254. |
35. | Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing, 2010, 39(4): 412-423. |
36. | Traub J, Bergheim I, Eibisberger M, et al. Sarcopenia and liver cirrhosis—comparison of the European Working Group on sarcopenia criteria 2010 and 2019. Nutrients, 2020, 12(2): 547. doi: 10.3390/nu12020547. |
37. | Carey EJ, Lai JC, Wang CW, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl, 2017, 23(5): 625-633. |
38. | Chen LK, Woo J, Assantachai P, et al. Asian Working Group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc, 2020, 21(3): 300-307. |
39. | Nishikawa H, Yoh K, Enomoto H, et al. Calf circumference as a useful predictor of sarcopenia in patients with liver diseases. In Vivo, 2020, 34(5): 2561-2569. |
40. | Hanai T, Shiraki M, Imai K, et al. Usefulness of carnitine supplementation for the complications of liver cirrhosis. Nutrients, 2020, 12(7): 1915. doi: 10.3390/nu12071915. |
41. | Li CW, Yu K, Shyh-Chang N, et al. Sterol metabolism and protein metabolism are differentially correlated with sarcopenia in Asian Chinese men and women. Cell Prolif, 2021, 54(4): e12989. doi: 10.1111/cpr.12989. |
42. | Endo K, Sato T, Kakisaka K, et al. Calf and arm circumference as simple markers for screening sarcopenia in patients with chronic liver disease. Hepatol Res, 2021, 51(2): 176-189. |
43. | Sinclair M, Chapman B, Hoermann R, et al. Handgrip strength adds more prognostic value to the model for end-stage liver disease score than imaging-based measures of muscle mass in men with cirrhosis. Liver Transpl, 2019, 25(10): 1480-1487. |
44. | Lanthier N, Stärkel P, Dahlqvist G. Frailty, sarcopenia and mortality in cirrhosis: what is the best assessment, how to interpret the data correctly and what interventions are possible?. Clin Res Hepatol Gastroenterol, 2021, 45(2): 101661. doi: 10.1016/j.clinre.2021.101661. |
45. | Treacy D, Hassett L. The short physical performance battery. J Physiother, 2018, 64(1): 61. doi: 10.1016/j.jphys.2017.04.002. |
46. | Lai JC, Covinsky KE, Dodge JL, et al. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology, 2017, 66(2): 564-574. |
47. | Lai JC, Dodge JL, Kappus MR, et al. Changes in frailty are associated with waitlist mortality in patients with cirrhosis. J Hepatol, 2020, 73(3): 575-581. |
48. | Bischoff SC, Bernal W, Dasarathy S, et al. ESPEN practical guideline: clinical nutrition in liver disease. Clin Nutr, 2020, 39(12): 3533-3562. |
49. | Chen CJ, Wang LC, Kuo HT, et al. Significant effects of late evening snack on liver functions in patients with liver cirrhosis: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol, 2019, 34(7): 1143-1152. |
50. | Hanai T, Shiraki M, Imai K, et al. Late evening snack with branched-chain amino acids supplementation improves survival in patients with cirrhosis. J Clin Med, 2020, 9(4): 1013. doi: 10.3390/jcm9041013. |
51. | Vasques J, Guerreiro CS, Sousa J, et al. Nutritional support in cirrhotic patients with sarcopenia. Clin Nutr ESPEN, 2019, 33: 12-17. |
52. | Kitajima Y, Takahashi H, Akiyama T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol, 2018, 53(3): 427-437. |
53. | Gonzalez A, Valero-Breton M, Huerta-Salgado C, et al. Impact of exercise training on the sarcopenia criteria in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Transl Myol, 2021, 31(1): 9630. DOI: 10.4081/ejtm.2021.9630. |
54. | Liguori I, Russo G, Aran L, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging, 2018, 13: 913-927. |
55. | Brioche T, Kireev RA, Cuesta S, et al. Growth hormone replacement therapy prevents sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant defenses. J Gerontol A Biol Sci Med Sci, 2014, 69(10): 1186-1198. |
56. | Kumar A, Davuluri G, Silva RNE, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology, 2017, 65(6): 2045-2058. |
57. | Hey P, Gow P, Testro AG, et al. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin Nutr ESPEN, 2021, 41: 13-22. |
58. | Ohashi K, Ishikawa T, Hoshii A, et al. Effect of levocarnitine administration in patients with chronic liver disease. Exp Ther Med, 2020, 20(5): 94. doi: 10.3892/etm.2020.9222. |
59. | Fujita M, Abe K, Hayashi M, et al. Skeletal muscle volume loss among liver cirrhosis patients receiving levocarnitine predicts poor prognosis. Medicine (Baltimore), 2020, 99(28): e21061. doi: 10.1097/MD.0000000000021061. |
- 1. Buchard B, Boirie Y, Cassagnes L, et al. Assessment of malnutrition, sarcopenia and frailty in patients with cirrhosis: which tools should we use in clinical practice? Nutrients, 2020, 12(1): 186. doi: 10.3390/nu12010186.
- 2. Mauro E, Crespo G, Martinez-Garmendia A, et al. Cystatin C and sarcopenia predict acute on chronic liver failure development and mortality in patients on the liver transplant waiting list. Transplantation, 2020, 104(7): e188-e198. doi: 10.1097/TP.0000000000003222.
- 3. Bojko M. Causes of sarcopenia in liver cirrhosis. Clin Liver Dis (Hoboken), 2019, 14(5): 167-170.
- 4. Sinclair M. Controversies in diagnosing sarcopenia in cirrhosis-moving from research to clinical practice. Nutrients, 2019, 11(10): 2454. doi: 10.3390/nu11102454.
- 5. Ooi PH, Hager A, Mazurak VC, et al. Sarcopenia in chronic liver disease: impact on outcomes. Liver Transpl, 2019, 25(9): 1422-1438.
- 6. Koo BK, Kim D, Joo SK, et al. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J Hepatol, 2017, 66(1): 123-131.
- 7. Welch N, Dasarathy J, Runkana A, et al. Continued muscle loss increases mortality in cirrhosis: impact of aetiology of liver disease. Liver Int, 2020, 40(5): 1178-1188.
- 8. Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, et al. Inclusion of sarcopenia within MELD (MELD-sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol, 2015, 6(7): e102. doi: 10.1038/ctg.2015.31.
- 9. van Vugt JLA, Alferink LJM, Buettner S, et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: a competing risk analysis in a national cohort. J Hepatol, 2018, 68(4): 707-714.
- 10. Bunchorntavakul C, Reddy KR. Review article: malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment Pharmacol Ther, 2020, 51(1): 64-77.
- 11. Meyer F, Bannert K, Wiese M, et al. Molecular mechanism contributing to malnutrition and sarcopenia in patients with liver cirrhosis. Int J Mol Sci, 2020, 21(15): 5357. doi: 10.3390/ijms21155357.
- 12. Nishikawa H, Yoh K, Enomoto H, et al. Sarcopenia and frailty in chronic liver damage: common and different points. In Vivo, 2020, 34(5): 2549-2559.
- 13. Qiu J, Thapaliya S, Runkana A, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism. Proc Natl Acad Sci USA, 2013, 110(45): 18162-18167.
- 14. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90.
- 15. Nishikawa H, Enomoto H, Ishii A, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle, 2017, 8(6): 915-925.
- 16. Oh S, Lee J. Sarcopenia and blood myokine levels as prognostic biomarkers in patients with liver cirrhosis or hepatocellular carcinoma. Clin Mol Hepatol, 2020, 26(4): 476-479.
- 17. Dasarathy S, Hatzoglou M. Hyperammonemia and proteostasis in cirrhosis. Curr Opin Clin Nutr Metab Care, 2018, 21(1): 30-36.
- 18. Davuluri G, Welch N, Sekar J, et al. Activated protein phosphatase 2A disrupts nutrient sensing balance between mechanistic target of rapamycin complex 1 and adenosine monophosphate-activated protein kinase, causing sarcopenia in alcohol-associated liver disease. Hepatology, 2021, 73(5): 1892-1908.
- 19. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol, 2016, 65(6): 1232-1244.
- 20. Butterworth RF. L-ornithine L-aspartate for the treatment of sarcopenia in chronic liver disease: the taming of a vicious cycle. Can J Gastroenterol Hepatol, 2019, 2019: 8182195. doi: 10.1155/2019/8182195.
- 21. Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int, 2018, 12(4): 377-386.
- 22. Jindal A, Jagdish RK. Sarcopenia: ammonia metabolism and hepatic encephalopathy. Clin Mol Hepatol, 2019, 25(3): 270-279.
- 23. Sinclair M, Grossmann M, Hoermann R, et al. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol, 2016, 65(5): 906-913.
- 24. Kovacheva EL, Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology, 2010, 151(2): 628-638.
- 25. Campos F, Abrigo J, Aguirre F, et al. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch, 2018, 470(10): 1503-1519.
- 26. Zhang J, Yu Y, Wang J. Protein nutritional support: the classical and potential new mechanisms in the prevention and therapy of sarcopenia. J Agric Food Chem, 2020, 68(14): 4098-4108.
- 27. Qiu J, Tsien C, Thapalaya S, et al. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab, 2012, 303(8): E983-E993. doi: 10.1152/ajpendo.00183.2012.
- 28. Nóbrega SR, Chachá SGF, Libardi CA. Resistance training combined with blood flow restriction in cirrhosis: study protocol for a randomized controlled trial. Trials, 2020, 21(1): 446. doi: 10.1186/s13063-020-04410-2.
- 29. Aamann L, Dam G, Borre M, et al. Resistance training increases muscle strength and muscle size in patients with liver cirrhosis. Clin Gastroenterol Hepatol, 2020, 18(5): 1179-1187.
- 30. 贺昆, 胡轩, 姚佳. 肝硬化合并营养不良患者的肠道菌群特征分析. 中华临床营养杂志, 2020, 28(3): 165-169.
- 31. Shimizu Y. Gut microbiota in common elderly diseases affecting activities of daily living. World J Gastroenterol, 2018, 24(42): 4750-4758.
- 32. Walsh ME, Bhattacharya A, Sataranatarajan K, et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell, 2015, 14(6): 957-970.
- 33. Hernández MAG, Canfora EE, Jocken JWE, et al. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients, 2019, 11(8): 1943. doi: 10.3390/nu11081943.
- 34. Nishikawa H, Enomoto H, Nishiguchi S, et al. Liver cirrhosis and sarcopenia from the viewpoint of dysbiosis. Int J Mol Sci, 2020, 21(15): 5254. doi: 10.3390/ijms21155254.
- 35. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing, 2010, 39(4): 412-423.
- 36. Traub J, Bergheim I, Eibisberger M, et al. Sarcopenia and liver cirrhosis—comparison of the European Working Group on sarcopenia criteria 2010 and 2019. Nutrients, 2020, 12(2): 547. doi: 10.3390/nu12020547.
- 37. Carey EJ, Lai JC, Wang CW, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl, 2017, 23(5): 625-633.
- 38. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc, 2020, 21(3): 300-307.
- 39. Nishikawa H, Yoh K, Enomoto H, et al. Calf circumference as a useful predictor of sarcopenia in patients with liver diseases. In Vivo, 2020, 34(5): 2561-2569.
- 40. Hanai T, Shiraki M, Imai K, et al. Usefulness of carnitine supplementation for the complications of liver cirrhosis. Nutrients, 2020, 12(7): 1915. doi: 10.3390/nu12071915.
- 41. Li CW, Yu K, Shyh-Chang N, et al. Sterol metabolism and protein metabolism are differentially correlated with sarcopenia in Asian Chinese men and women. Cell Prolif, 2021, 54(4): e12989. doi: 10.1111/cpr.12989.
- 42. Endo K, Sato T, Kakisaka K, et al. Calf and arm circumference as simple markers for screening sarcopenia in patients with chronic liver disease. Hepatol Res, 2021, 51(2): 176-189.
- 43. Sinclair M, Chapman B, Hoermann R, et al. Handgrip strength adds more prognostic value to the model for end-stage liver disease score than imaging-based measures of muscle mass in men with cirrhosis. Liver Transpl, 2019, 25(10): 1480-1487.
- 44. Lanthier N, Stärkel P, Dahlqvist G. Frailty, sarcopenia and mortality in cirrhosis: what is the best assessment, how to interpret the data correctly and what interventions are possible?. Clin Res Hepatol Gastroenterol, 2021, 45(2): 101661. doi: 10.1016/j.clinre.2021.101661.
- 45. Treacy D, Hassett L. The short physical performance battery. J Physiother, 2018, 64(1): 61. doi: 10.1016/j.jphys.2017.04.002.
- 46. Lai JC, Covinsky KE, Dodge JL, et al. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology, 2017, 66(2): 564-574.
- 47. Lai JC, Dodge JL, Kappus MR, et al. Changes in frailty are associated with waitlist mortality in patients with cirrhosis. J Hepatol, 2020, 73(3): 575-581.
- 48. Bischoff SC, Bernal W, Dasarathy S, et al. ESPEN practical guideline: clinical nutrition in liver disease. Clin Nutr, 2020, 39(12): 3533-3562.
- 49. Chen CJ, Wang LC, Kuo HT, et al. Significant effects of late evening snack on liver functions in patients with liver cirrhosis: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol, 2019, 34(7): 1143-1152.
- 50. Hanai T, Shiraki M, Imai K, et al. Late evening snack with branched-chain amino acids supplementation improves survival in patients with cirrhosis. J Clin Med, 2020, 9(4): 1013. doi: 10.3390/jcm9041013.
- 51. Vasques J, Guerreiro CS, Sousa J, et al. Nutritional support in cirrhotic patients with sarcopenia. Clin Nutr ESPEN, 2019, 33: 12-17.
- 52. Kitajima Y, Takahashi H, Akiyama T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol, 2018, 53(3): 427-437.
- 53. Gonzalez A, Valero-Breton M, Huerta-Salgado C, et al. Impact of exercise training on the sarcopenia criteria in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Transl Myol, 2021, 31(1): 9630. DOI: 10.4081/ejtm.2021.9630.
- 54. Liguori I, Russo G, Aran L, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging, 2018, 13: 913-927.
- 55. Brioche T, Kireev RA, Cuesta S, et al. Growth hormone replacement therapy prevents sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant defenses. J Gerontol A Biol Sci Med Sci, 2014, 69(10): 1186-1198.
- 56. Kumar A, Davuluri G, Silva RNE, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology, 2017, 65(6): 2045-2058.
- 57. Hey P, Gow P, Testro AG, et al. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin Nutr ESPEN, 2021, 41: 13-22.
- 58. Ohashi K, Ishikawa T, Hoshii A, et al. Effect of levocarnitine administration in patients with chronic liver disease. Exp Ther Med, 2020, 20(5): 94. doi: 10.3892/etm.2020.9222.
- 59. Fujita M, Abe K, Hayashi M, et al. Skeletal muscle volume loss among liver cirrhosis patients receiving levocarnitine predicts poor prognosis. Medicine (Baltimore), 2020, 99(28): e21061. doi: 10.1097/MD.0000000000021061.