1. |
Usher FC, Ochsner J, Tuttle LL Jr. Use of Marlex mesh in the repair of incisional hernias. Am Surg, 1958, 24(12): 969-974.
|
2. |
Lee TH, Choudhuri A, Ulisney K, et al. Use of real-world registry data: a hernia mesh example. Hernia, 2020, 24(3): 587-590.
|
3. |
Usher FC, Hill JR, Ochsner JL. Hernia repair with Marlex mesh. A comparison of techniques. Surgery, 1959, 46: 718-724.
|
4. |
Sanders DL, Kingsnorth AN. From ancient to contemporary times: a concise history of incisional hernia repair. Hernia, 2012, 16(1): 1-7.
|
5. |
Kish KJ, Buinewicz BR, Morris JB. Acellular dermal matrix (AlloDerm): new material in the repair of stoma site hernias. Am Surg, 2005, 71(12): 1047-1050.
|
6. |
Borrazzo EC, Belmont MF, Boffa D, et al. Effect of prosthetic material on adhesion formation after laparoscopic ventral hernia repair in a porcine model. Hernia, 2004, 8(2): 108-112.
|
7. |
Matthews BD, Pratt BL, Pollinger HS, et al. Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh. J Surg Res, 2003, 114(2): 126-132.
|
8. |
Alexandre JH. Jean-Paul Chevrel (1933-2006). Hernia, 2007, 11(4): 293-296.
|
9. |
Fuziy RA, Artigiani Neto R, Caetano Junior EM, et al. Comparative study of four different types of intraperitoneal mesh prostheses in rats. Acta Cir Bras, 2019, 34(7): e201900703. doi: 10.1590/s0102-865020190070000003.
|
10. |
Stavert B, Chan DL, Ozmen J, et al. Laparoscopic totally extra-peritoneal groin hernia repair with self-gripping polyester mesh: a series of 780 repairs. ANZ J Surg, 2019, 89(10): 1261-1264.
|
11. |
Totten C, Becker P, Lourd M, et al. Polyester vs polypropylene, do mesh materials matter? A meta-analysis and systematic review. Med Devices (Auckl), 2019, 12: 369-378.
|
12. |
范中宝, 沈建芬, 王键, 等. 3Dmax 轻量型疝补片和 Prolene 重量型网片腹膜前修补腹股沟疝的比较. 中国组织工程研究, 2020, 24(34): 5545-5551.
|
13. |
徐炳良. 轻量型补片在腹股沟疝无张力修补术中的应用效果观察. 中国高等医学教育, 2020, (7): 142, 144.
|
14. |
Petro CC, Nahabet EH, Criss CN, et al. Central failures of lightweight monofilament polyester mesh causing hernia recurrence: a cautionary note. Hernia, 2015, 19(1): 155-159.
|
15. |
Blatnik JA, Krpata DM, Jacobs MR, et al. In vivo analysis of the morphologic characteristics of synthetic mesh to resist MRSA adherence. J Gastrointest Surg, 2012, 16(11): 2139-2144.
|
16. |
夏克尔·赛塔尔, 李彦, 乔燕莎, 等. 疝气补片及其高生物相容性发展现状和趋势展望. 纺织导报, 2018, (5): 42-46.
|
17. |
高瑛, 石坤和, 顾渊, 等. 3D立体补片在腹腔镜经腹腹膜前疝修补术中的应用. 中华疝和腹壁外科杂志 (电子版), 2020, 14(2): 189-191.
|
18. |
Wang F, Yang XF. Application of computer tomography-based 3D reconstruction technique in hernia repair surgery. World J Clin Cases, 2020, 8(23): 5944-5951.
|
19. |
Yang S, Shen YM, Wang MG, et al. Titanium-coated mesh versus standard polypropylene mesh in laparoscopic inguinal hernia repair: a prospective, randomized, controlled clinical trial. Hernia, 2019, 23(2): 255-259.
|
20. |
Aydemir Sezer U, Sanko V, Gulmez M, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Mater Sci Eng C Mater Biol Appl, 2019, 99: 1141-1152.
|
21. |
Liu H, van Steensel S, Gielen M, et al. Comparison of coated meshes for intraperitoneal placement in animal studies: a systematic review and meta-analysis. Hernia, 2020, 24(6): 1253-1261.
|
22. |
Asadian M. Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. J Phys, 2017, 841: 012018. doi: 10.1088/1742-6596/841/1/012018.
|
23. |
Giuntoli G, Muzio G, Actis C, et al. In-vitro characterization of a hernia mesh featuring a nanostructured coating. Front Bioeng Biotechnol, 2021, 8: 589223. doi: 10.3389/fbioe.2020.589223.
|
24. |
张永祥, 李娇娇, 欧思敏, 等. 浸涂法制备聚乳酸乙醇酸共聚物/聚丙烯腹壁复合补片的体外降解及力学性能. 高分子材料科学与工程, 2020, 36(12): 123-128, 136.
|
25. |
Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction. Plast Reconstr Surg, 2004, 114(2): 464-473.
|
26. |
FitzGerald JF, Kumar AS. Biologic versus synthetic mesh reinforcement: what are the pros and cons? Clin Colon Rectal Surg, 2014, 27(4): 140-148.
|
27. |
Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res, 2014, 163(4): 268-285.
|
28. |
Overbeck N, Nagvajara GM, Ferzoco S, et al. In-vivo evaluation of a reinforced ovine biologic: a comparative study to available hernia mesh repair materials. Hernia, 2020, 24(6): 1293-1306.
|
29. |
Garvey PB, Giordano SA, Baumann DP, et al. Long-term outcomes after abdominal wall reconstruction with acellular dermal matrix. J Am Coll Surg, 2017, 224(3): 341-350.
|
30. |
Koscielny A, Widenmayer S, May T, et al. Comparison of biological and alloplastic meshes in ventral incisional hernia repair. Langenbecks Arch Surg, 2018, 403(2): 255-263.
|
31. |
Harris HW, Primus F, Young C, et al. Preventing recurrence in clean and contaminated hernias using biologic versus synthetic mesh in ventral hernia repair: The PRICE randomized clinical trial. Ann Surg, 2021, 273(4): 648-655.
|
32. |
Olavarria OA, Bernardi K, Dhanani NH, et al. Synthetic versus biologic mesh for complex open ventral hernia repair: a pilot randomized controlled trial. Surg Infect (Larchmt), 2021, 22(5): 496-503.
|
33. |
van’t Riet M, de Vos van Steenwijk PJ, Bonjer HJ, et al. Mesh repair for postoperative wound dehiscence in the presence of infection: is absorbable mesh safer than non-absorbable mesh? Hernia, 2007, 11(5): 409-413.
|
34. |
Priego Jiménez P, Salvador Sanchís JL, Angel V, et al. Short-term results for laparoscopic repair of large paraesophageal hiatal hernias with Gore Bio A® mesh. Int J Surg, 2014, 12(8): 794-797.
|
35. |
Smith A, Slater K. Outcomes of biosynthetic absorbable mesh use in high risk CDC class Ⅰ ventral hernia repair: a single surgeon series. Hernia, 2021 Jun 8. doi: 10.1007/s10029-021-02424-6.
|
36. |
Aldohayan A, Alamri H, Aljunidel R, et al. Laparoscopic ventral hernia repair with poly-4-hydroxybutyrate absorbable barrier composite mesh. JSLS, 2021, 25(1): e2020.00105. doi: 10.4293/JSLS.2020.00105.
|
37. |
Yabanoğlu H, Arer İM, Çalıskan K. The effect of the use of synthetic mesh soaked in antibiotic solution on the rate of graft infection in ventral hernias: a prospective randomized study. Int Surg, 2015, 100(6): 1040-1047.
|
38. |
Kumar V, Jolivalt C, Pulpytel J, et al. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J Biomed Mater Res A, 2013, 101(4): 1121-1132.
|
39. |
Thatiparti TR, von Recum HA. Cyclodextrin complexation for affinity-based antibiotic delivery. Macromol Biosci, 2010, 10(1): 82-90.
|
40. |
Blatnik JA, Thatiparti TR, Krpata DM, et al. Infection prevention using affinity polymer-coated, synthetic meshes in a pig hernia model. J Surg Res, 2017, 219: 5-10.
|