1. |
Van Cutsem E, Bang YJ, Feng-Yi F, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer, 2015, 18(3): 476-484.
|
2. |
《胃癌 HER2 检测指南》编写组. 胃癌 HER2 检测指南. 中华病理学杂志, 2011, 40(8): 553-557.
|
3. |
胃癌 HER2 检测指南(2016 版)专家组. 胃癌 HER2 检测指南(2016 版). 中华病理学杂志. 2016, 45(8): 528-532.
|
4. |
梁盼, 赵曦曈, 赵慧萍, 等. CT 对胃癌诊断和临床应用价值. 中华放射学杂志, 2020, 54(11): 1141-1144.
|
5. |
Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503.
|
6. |
Szczypinski PM, Strzelecki M, Materka A. MaZda—a software for texture analysis. 2007 International Symposium on Information Technology Convergence. 2007: 245-249.
|
7. |
Szczypiński PM, Strzelecki M, Materka A, et al. MaZda—a software package for image texture analysis. Comput Methods Programs Biomed, 2009, 94(1): 66-76.
|
8. |
Materka A SP. MaZda User’s Manual [MaZda 4.6. download link]. 1999. http://www.eletel.p.lodz.pl/programy/mazda/.
|
9. |
王永芹, 黄子星, 袁放, 等. CT 平扫图像纹理分析对肝癌与肝血管瘤鉴别诊断的初步研究. 中国普外基础与临床杂志, 2017, 24(2): 254-258.
|
10. |
Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging, 2004, 22(1): 81-91.
|
11. |
Yan L, Liu Z, Wang G, et al. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad Radiol, 2015, 22(9): 1115-1121.
|
12. |
Yoon HH, Sukov WR, Shi Q, et al. HER-2/neu gene amplification in relation to expression of HER2 and HER3 proteins in patients with esophageal adenocarcinoma. Cancer, 2014, 120(3): 415-424.
|
13. |
Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 2010, 376(9742): 687-697.
|
14. |
Tominaga N, Gotoda T, Hara M, et al. Five biopsy specimens from the proximal part of the tumor reliably determine HER2 protein expression status in gastric cancer. Gastric Cancer, 2016, 19(2): 553-560.
|
15. |
Gullo I, Grillo F, Molinaro L, et al. Minimum biopsy set for HER2 evaluation in gastric and gastro-esophageal junction cancer. Endosc Int Open, 2015, 3(2): E165-E170.
|
16. |
俞悦, 周爱萍, 曾益新. HER2 阳性胃癌的治疗研究进展. 中国肿瘤临床, 2017, 44(2): 59-63.
|
17. |
Materka A, Strzelecki M. Texture analysis methods - a review. COST B11 report, 1998. https://www.researchgate.net/publication/249723259_Texture_Analysis_Methods_-_A_Review.
|
18. |
陈瑾, 王海屹, 叶慧义. 纹理分析在肿瘤影像学中的研究进展. 中华放射学杂志, 2017, 51(12): 979-982.
|
19. |
Yi X, Guan X, Chen C, et al. Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma. J Cancer, 2018, 9(19): 3577-3582.
|
20. |
Ganeshan B, Goh V, Mandeville HC, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology, 2013, 266(1): 326-336.
|
21. |
Court LE, Fave X, Mackin D, et al. Computational resources for radiomics. Transl Cancer Res, 2016, 5(4): 340-348.
|