1. |
韩玉珍. 肝移植术后早期肝功能不全危险因素及防治的研究进展. 医学研究生学报, 2021, 34(2): 185-189.
|
2. |
Hudcova J, Scopa C, Rashid J, et al. Effect of early allograft dysfunction on outcomes following liver transplantation. Clin Transplant, 2017, 31(2): e12887. doi: 10.1111/ctr.12887.
|
3. |
Derbisz K, Nylec M, Chrząszcz P, et al. Recipient-related preoperative and intraoperative risk factors for primary graft dysfunction after orthotopic liver transplantation. Transplant Proc, 2018, 50(7): 2018-2021.
|
4. |
王婷婷, 姜英俊, 解曼, 等. 肝移植术后早期肝功能不全影响因素的临床分析(附88例报道). 吴阶平医学基金会、全国疑难及重症肝病攻关协作组、北京医药科学技术发展协会、首都医科大学肝病转化医学研究所. 第九届全国疑难及重症肝病大会论文集. 北京: 吴阶平医学基金会、全国疑难及重症肝病攻关协作组、北京医药科学技术发展协会、首都医科大学肝病转化医学研究所: 全国重型肝病及人工肝血液净化攻关协作组, 2017: 1.
|
5. |
Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta, 2018, 484: 150-163.
|
6. |
Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol, 2016, 213: 8-14.
|
7. |
Wen M, Zhou B, Chen YH, et al. Serum uric acid levels in patients with Parkinson’s disease: a meta-analysis. PLoS One, 2017, 12(3): e0173731. doi: 10.1371/journal.pone.0173731.
|
8. |
Fernández-Gajardo R, Matamala JM, Gutiérrez R, et al. Relationship between infarct size and serum uric acid levels during the acute phase of stroke. PLoS One, 2019, 14(7): e0219402. doi: 10.1371/journal.pone.0219402.
|
9. |
Boccardi V, Carino S, Marinelli E, et al. Uric acid and late-onset Alzheimer’s disease: results from the ReGAl 2. 0 project. Aging Clin Exp Res, 2021, 33(2): 361-366.
|
10. |
Mikami T, Sorimachi M. Uric acid contributes greatly to hepatic antioxidant capacity besides protein. Physiol Res, 2017, 66(6): 1001-1007.
|
11. |
Michelis MF, Warms PC, Fusco RD, et al. Hypouricemia and hyperuricosuria in Laennec cirrhosis. Arch Intern Med, 1974, 134(4): 681-683.
|
12. |
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms. Liver Int, 2019, 39(5): 788-801.
|
13. |
Zhang B, Yang N, Lin SP, et al. Suitable concentrations of uric acid can reduce cell death in models of OGD and cerebral ischemia-reperfusion injury. Cell Mol Neurobiol, 2017, 37(5): 931-939.
|
14. |
Cheng GM, Wang RL, Zhang B, et al. The protective effect of uric acid in reducing TLR4/NF-κB activation through the inhibition of HMGB1 acetylation in a model of ischemia-reperfusion injury in vitro. Mol Biol Rep, 2020, 47(4): 3233-3240.
|
15. |
Hu LM, Tsai HI, Lee CW, et al. Uric acid as a predictor for early allograft dysfunction after living donor liver transplantation: a prospective observational study. J Clin Med, 2021, 10(12): 2729. doi: 10.3390/jcm10122729.
|
16. |
Wood G, Grenader T, Nash S, et al. Derived neutrophil to lymphocyte ratio as a prognostic factor in patients with advanced colorectal cancer according to RAS and BRAF status: a post-hoc analysis of the MRC COIN study. Anticancer Drugs, 2017, 28(5): 546-550.
|
17. |
方桦, 孙振刚, 赵国永, 等. NLR预测肝癌患者预后的临床价值. 河北医药, 2021, 43(13): 1983-1986.
|
18. |
邹文强, 林海, 韩玮, 等. 中性粒细胞与淋巴细胞比值对胰腺癌预后的影响. 医学研究杂志, 2018, 47(2): 141-144, 183.
|
19. |
Nylec M, Derbisz K, Chrząszcz P, et al. Preoperative neutrophil-to-lymphocyte ratio as an independent predictor of 1-year graft loss and mortality after orthotopic liver transplantation. Transplant Proc, 2020, 52(8): 2472-2476.
|
20. |
Kwon HM, Moon YJ, Jung KW, et al. Neutrophil-to-lymphocyte ratio is a predictor of early graft dysfunction following living donor liver transplantation. Liver Int, 2019, 39(8): 1545-1556.
|
21. |
Avdonin PP, Tsvetaeva NV, Goncharov NV, et al. von Willebrand factor in health and disease. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2021, 15(3): 201-218.
|
22. |
Terraube V, O'Donnell JS, Jenkins PV. Factor Ⅷ and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia, 2010, 16(1): 3-13.
|
23. |
Kwon HM, Kim KS, Park J, et al. von Willebrand factor to protein C ratio-related thrombogenicity with systemic inflammation is predictive of graft dysfunction after liver transplantation: retrospective cohort study. Int J Surg, 2020, 84: 109-116.
|
24. |
Geske JB, McKie PM, Ommen SR, et al. B-type natriuretic peptide and survival in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2013, 61(24): 2456-2460.
|
25. |
Passino C, Poletti R, Fontana M, et al. Clinical relevance of non-cardiac determinants of natriuretic peptide levels. Clin Chem Lab Med, 2008, 46(11): 1515-1523.
|
26. |
Shi LY, Jin R, Lin CJ, et al. B-type natriuretic peptide and cirrhosis progression. Genet Mol Res, 2015, 14(2): 5188-5196.
|
27. |
Chae MS, Koo JM, Park CS. Predictive role of intraoperative serum brain natriuretic peptide for early allograft dysfunction in living donor liver transplantation. Ann Transplant, 2016, 21: 538-549.
|
28. |
Zhou J, Chen J, Wei Q, et al. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction. Liver Transpl, 2020, 26(8): 1034-1048.
|
29. |
Faitot F, Besch C, Lebas B, et al. Interleukin 6 at reperfusion: a potent predictor of hepatic and extrahepatic early complications after liver transplantation. Clin Transplant, 2018, 32(9): e13357. doi: 10.1111/ctr.13357.
|
30. |
Kurian SM, Fouraschen SM, Langfelder P, et al. Genomic profiles and predictors of early allograft dysfunction after human liver transplantation. Am J Transplant, 2015, 15(6): 1605-1614.
|
31. |
Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med, 1997, 242(1): 27-33.
|
32. |
Plevris N, Sinha R, Hay AW, et al. Index serum hyaluronic acid independently and accurately predicts mortality in patients with liver disease. Aliment Pharmacol Ther, 2018, 48(4): 423-430.
|
33. |
Rostved AA, Ostrowski SR, Peters L, et al. Hyaluronic acid is a biomarker for allograft dysfunction and predicts 1-year graft loss after liver transplantation. Transplant Proc, 2018, 50(10): 3635-3643.
|
34. |
党玲, 贾皑, 王芳. 血清内毒素结合蛋白和sCD163水平预测亚急性肝衰竭患者预后的价值分析. 实用肝脏病杂志, 2021, 24(3): 447-448.
|
35. |
Kazankov K, Barrera F, Møller HJ, et al. The macrophage activation marker sCD163 is associated with morphological disease stages in patients with non-alcoholic fatty liver disease. Liver Int, 2016, 36(10): 1549-1557.
|
36. |
Laursen TL, Wong GL, Kazankov K, et al. Soluble CD163 and mannose receptor associate with chronic hepatitis B activity and fibrosis and decline with treatment. J Gastroenterol Hepatol, 2018, 33(2): 484-491.
|
37. |
Thomsen KL, Robertson FP, Holland-Fischer P, et al. The macrophage activation marker soluble CD163 is associated with early allograft dysfunction after liver transplantation. J Clin Exp Hepatol, 2019, 9(3): 302-311.
|
38. |
Tsai HI, Lo CJ, Zheng CW, et al. A lipidomics study reveals lipid signatures associated with early allograft dysfunction in living donor liver transplantation. J Clin Med, 2018, 8(1): 30. doi: 10.3390/jcm8010030.
|
39. |
Ascha M, Wang Z, Ascha MS, et al. Metabolomics studies identify novel diagnostic and prognostic indicators in patients with alcoholic hepatitis. World J Hepatol, 2016, 8(10): 499-508.
|
40. |
Taylor LA, Arends J, Hodina AK, et al. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis, 2007, 6: 17. doi: 10.1186/1476-511X-6-17.
|
41. |
Wu T, Zheng X, Yang M, et al. Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients. Sci Rep, 2017, 7: 42710. doi: 10.1038/srep42710.
|
42. |
Tsai HI, Lo CJ, Lee CW, et al. A panel of biomarkers in the prediction for early allograft dysfunction and mortality after living donor liver transplantation. Am J Transl Res, 2021, 13(1): 372-382.
|
43. |
陈真真, 张文祥, 刘志婷, 等. 血乳酸清除率和血清降钙素原清除率对脓毒性休克患儿预后的预测价值. 中国循证儿科杂志, 2019, 14(6): 448-452.
|
44. |
Golse N, Guglielmo N, El Metni A, et al. Arterial lactate concentration at the end of liver transplantation is an early predictor of primary graft dysfunction. Ann Surg, 2019, 270(1): 131-138.
|
45. |
Wu JF, Wu RY, Chen J, et al. Early lactate clearance as a reliable predictor of initial poor graft function after orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int, 2011, 10(6): 587-592.
|
46. |
Takahashi K, Jafri SR, Safwan M, et al. Peri-transplant lactate levels and delayed lactate clearance as predictive factors for poor outcomes after liver transplantation: a propensity score-matched study. Clin Transplant, 2019, 33(7): e13613. doi: 10.1111/ctr.13613.
|
47. |
Zulian MC, Chedid MF, Chedid AD, et al. Low serum factor Ⅴ level: early predictor of allograft failure and death following liver transplantation. Langenbecks Arch Surg, 2015, 400(5): 589-597.
|
48. |
Gorgen A, Prediger C, Prediger JE, et al. Serum factor Ⅴ is a continuous biomarker of graft dysfunction and a predictor of graft loss after liver transplantation. Transplantation, 2019, 103(5): 944-951.
|
49. |
Mann DV, Lam WW, Hjelm NM, et al. Human liver regeneration: hepatic energy economy is less efficient when the organ is diseased. Hepatology, 2001, 34(3): 557-565.
|
50. |
Hong SH, Kwak JA, Chon JY, et al. Prediction of early allograft dysfunction using serum phosphorus level in living donor liver transplantation. Transpl Int, 2013, 26(4): 402-410.
|