1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Wu L, Yang X. Targeting the Hippo pathway for breast cancer therapy. Cancers (Basel), 2018, 10(11): 422. doi: 10.3390/cancers10110422.
|
3. |
Zhao B, Lei QY, Guan KL. The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol, 2008, 20(6): 638-646.
|
4. |
Cha YJ, Bae SJ, Kim D, et al. High nuclear expression of Yes-associated protein 1 correlates with metastasis in patients with breast cancer. Front Oncol, 2021, 11: 609743. doi: 10.3389/fonc.2021.609743.
|
5. |
Díaz-Martín J, López-García MÁ, Romero-Pérez L, et al. Nuclear TAZ expression associates with the triple-negative phenotype in breast cancer. Endocr Relat Cancer, 2015, 22(3): 443-454.
|
6. |
Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 2015, 163(4): 811-828.
|
7. |
Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer, 2015, 15(2): 73-79.
|
8. |
Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep, 2014, 15(6): 642-656.
|
9. |
Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747-2761.
|
10. |
Liu CY, Zha ZY, Zhou X, et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J Biol Chem, 2010, 285(48): 37159-37169.
|
11. |
Zhao B, Ye X, Yu J, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev, 2008, 22(14): 1962-1971.
|
12. |
Koontz LM, Liu-Chittenden Y, Yin F, et al. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell, 2013, 25(4): 388-401.
|
13. |
Vici P, Ercolani C, Di Benedetto A, et al. Topographic expression of the Hippo transducers TAZ and YAP in triple-negative breast cancer treated with neoadjuvant chemotherapy. J Exp Clin Cancer Res, 2016, 35: 62. doi: 10.1186/s13046-016-0338-7.
|
14. |
Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol, 2016, 11: 47-76.
|
15. |
Park JH, Shin JE, Park HW. The role of Hippo pathway in cancer stem cell biology. Mol Cells, 2018, 41(2): 83-92.
|
16. |
Samanta S, Sun H, Goel HL, et al. IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene, 2016, 35(9): 1111-1121.
|
17. |
Samanta S, Guru S, Elaimy AL, et al. IMP3 stabilization of WNT5B mRNA facilitates TAZ activation in breast cancer. Cell Rep, 2018, 23(9): 2559-2567.
|
18. |
Gao Y, Chen X, He Q, et al. Adipocytes promote breast tumorigenesis through TAZ-dependent secretion of Resistin. Proc Natl Acad Sci USA, 2020, 117(52): 33295-33304.
|
19. |
Sun HL, Men JR, Liu HY, et al. FOXM1 facilitates breast cancer cell stemness and migration in YAP1-dependent manner. Arch Biochem Biophys, 2020, 685: 108349. doi: 10.1016/j.abb.2020.108349.
|
20. |
Liu S, Cong Y, Wang D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2013, 2(1): 78-91.
|
21. |
Sulaiman A, McGarry S, Li L, et al. Dual inhibition of Wnt and Yes-associated protein signaling retards the growth of triple-negative breast cancer in both mesenchymal and epithelial states. Mol Oncol, 2018, 12(4): 423-440.
|
22. |
Rajabi H, Kufe D. MUC1-C oncoprotein integrates a program of EMT, epigenetic reprogramming and immune evasion in human carcinomas. Biochim Biophys Acta Rev Cancer, 2017, 1868(1): 117-122.
|
23. |
Li P, Mao X, Ren Y, et al. Epithelial cell polarity determinant CRB3 in cancer development. Int J Biol Sci, 2015, 11(1): 31-37.
|
24. |
Alam M, Bouillez A, Tagde A, et al. MUC1-C represses the crumbs complex polarity factor CRB3 and downregulates the Hippo pathway. Mol Cancer Res, 2016, 14(12): 1266-1276.
|
25. |
Quinn HM, Vogel R, Popp O, et al. YAP and β-catenin cooperate to drive oncogenesis in basal breast cancer. Cancer Res, 2021, 81(8): 2116-2127.
|
26. |
Wang Z, Katsaros D, Biglia N, et al. Low expression of WWC1, a tumor suppressor gene, is associated with aggressive breast cancer and poor survival outcome. FEBS Open Bio, 2019, 9(7): 1270-1280.
|
27. |
Zhang X, Liu X, Luo J, et al. Notch3 inhibits epithelial-mesenchymal transition by activating Kibra-mediated Hippo/YAP signaling in breast cancer epithelial cells. Oncogenesis, 2016, 5(11): e269.doi: 10.1038/oncsis.2016.67.
|
28. |
Liu X, Li C, Zhang R, et al. The EZH2- H3K27me3-DNMT1 complex orchestrates epigenetic silencing of the wwc1 gene, a Hippo/YAP pathway upstream effector, in breast cancer epithelial cells. Cell Signal, 2018, 51: 243-256.
|
29. |
Thirunavukkarasan M, Wang C, Rao A, et al. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One, 2017, 12(10): e0186334. doi: 10.1371/journal.pone.0186334.
|
30. |
Dang DK, Makena MR, Llongueras JP, et al. A Ca2+-ATPase regulates E-cadherin biogenesis and epithelial-mesenchymal transition in breast cancer cells. Mol Cancer Res, 2019, 17(8): 1735-1747.
|
31. |
王加琪, 张一帆, 张研, 等. microRNA-200 家族在三阴性乳腺癌中的研究进展. 中国普外基础与临床杂志, 2019, 26(8): 1002-1006.
|
32. |
Feldker N, Ferrazzi F, Schuhwerk H, et al. Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J, 2020, 39(17): e103209. doi: 10.15252/embj.2019103209.
|
33. |
Ye S, Xu Y, Wang L, et al. Estrogen-related receptor α (ERRα) and G protein-coupled estrogen receptor (GPER) synergistically indicate poor prognosis in patients with triple-negative breast cancer. Onco Targets Ther, 2020, 13: 8887-8899.
|
34. |
Huang R, Li J, Pan F, et al. The activation of GPER inhibits cells proliferation, invasion and EMT of triple-negative breast cancer via CD151/miR-199a-3p bio-axis. Am J Transl Res, 2020, 12(1): 32-44.
|
35. |
Wang Z, Kong Q, Su P, et al. Regulation of Hippo signaling and triple negative breast cancer progression by an ubiquitin ligase RNF187. Oncogenesis, 2020, 9(3): 36. doi: 10.1038/s41389-020-0220-5.
|
36. |
Zhou R, Ding Y, Xue M, et al. RNF181 modulates Hippo signaling and triple negative breast cancer progression. Cancer Cell Int, 2020, 20: 291. doi: 10.1186/s12935-020-01397-3.
|
37. |
Liu Y, Su P, Zhao W, et al. ZNF213 negatively controls triple negative breast cancer progression via Hippo/YAP signaling. Cancer Sci, 2021, 112(7): 2714-2727.
|
38. |
Kedan A, Verma N, Saroha A, et al. PYK2 negatively regulates the Hippo pathway in TNBC by stabilizing TAZ protein. Cell Death Dis, 2018, 9(10): 985. doi: 10.1038/s41419-018-1005-z.
|
39. |
Mussell A, Shen H, Chen Y, et al. USP1 regulates TAZ protein stability through ubiquitin modifications in breast cancer. Cancers (Basel), 2020, 12(11): 3090. doi: 10.3390/cancers12113090.
|
40. |
Guo X, Zhao Y, Yan H, et al. Single tumor-initiating cells evade immune clearance by recruiting type Ⅱ macrophages. Genes Dev, 2017, 31(3): 247-259.
|
41. |
Zhang Y, Fan Y, Jing X, et al. OTUD5-mediated deubiquitination of YAP in macrophage promotes M2 phenotype polarization and favors triple-negative breast cancer progression. Cancer Lett, 2021, 504: 104-115.
|
42. |
Rigiracciolo DC, Nohata N, Lappano R, et al. IGF-1/IGF-1R/FAK/YAP transduction signaling prompts growth effects in triple-negative breast cancer (TNBC) cells. Cells, 2020, 9(4): 1010.
|
43. |
Jiang K, Liu P, Xu H, et al. SASH1 suppresses triple-negative breast cancer cell invasion through YAP-ARHGAP42-actin axis. Oncogene, 2020, 39(27): 5015-5030.
|
44. |
Li Y, Hua K, Jin J, et al. miR-497 inhibits proliferation and invasion in triple-negative breast cancer cells via YAP1. Oncol Lett, 2021, 22(2): 580. doi: 10.3892/ol.2021.12841.
|
45. |
Wang Y, Liu S. LncRNA GHET1 promotes hypoxia-induced glycolysis, proliferation, and invasion in triple-negative breast cancer through the Hippo/YAP signaling pathway. Front Cell Dev Biol, 2021, 9: 643515. doi: 10.3389/fcell.2021.643515.
|
46. |
Hu J, Ji C, Hua K, et al. Hsa_circ_0091074 regulates TAZ expression via microRNA-1297 in triple negative breast cancer cells. Int J Oncol, 2020, 56(5): 1314-1326.
|
47. |
An P, Li J, Lu L, et al. Histone deacetylase 8 triggers the migration of triple negative breast cancer cells via regulation of YAP signals. Eur J Pharmacol, 2019, 845: 16-23.
|
48. |
Deng Q, Jiang G, Wu Y, et al. GPER/Hippo-YAP signal is involved in bisphenol S induced migration of triple negative breast cancer (TNBC) cells. J Hazard Mater, 2018, 355: 1-9.
|
49. |
Chen W, Bai Y, Patel C, et al. Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization. Biochem Biophys Res Commun, 2019, 520(2): 263-268.
|
50. |
Liu J, Ye L, Li Q, et al. Synaptopodin-2 suppresses metastasis of triple-negative breast cancer via inhibition of YAP/TAZ activity. J Pathol, 2018, 244(1): 71-83.
|
51. |
Gan L, Camarena V, Mustafi S, et al. Vitamin C inhibits triple-negative breast cancer metastasis by affecting the expression of YAP1 and synaptopodin 2. Nutrients, 2019, 11(12): 2997. doi: 10.3390/nu11122997.
|
52. |
Wang G, Dong Y, Liu H, et al. Loss of miR-873 contributes to gemcitabine resistance in triple-negative breast cancer via targeting ZEB1. Oncol Lett, 2019, 18(4): 3837-3844.
|
53. |
He Z, Zhao TT, Jin F, et al. Downregulation of RASSF6 promotes breast cancer growth and chemoresistance through regulation of Hippo signaling. Biochem Biophys Res Commun, 2018, 503(4): 2340-2347.
|
54. |
Koh SB, Ross K, Isakoff SJ, et al. RASAL2 confers collateral MEK/EGFR dependency in chemoresistant triple-negative breast cancer. Clin Cancer Res, 2021, 27(17): 4883-4897.
|
55. |
Elaimy AL, Amante JJ, Zhu LJ, et al. The VEGF receptor neuropilin 2 promotes homologous recombination by stimulating YAP/TAZ-mediated Rad51 expression. Proc Natl Acad Sci USA, 2019, 116(28): 14174-14180.
|
56. |
Ma J, Fan Z, Tang Q, et al. Aspirin attenuates YAP and β-catenin expression by promoting β-TrCP to overcome docetaxel and vinorelbine resistance in triple-negative breast cancer. Cell Death Dis, 2020, 11(7): 530. doi: 10.1038/s41419-020-2719-2.
|
57. |
Dai M, Yan G, Wang N, et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun, 2021, 12(1): 3055. doi: 10.1038/s41467-021-23316-4.
|
58. |
Koohestanimobarhan S, Salami S, Imeni V, et al. Lipophilic statins antagonistically alter the major epithelial-to-mesenchymal transition signaling pathways in breast cancer stem-like cells via inhibition of the mevalonate pathway. J Cell Biochem, 2018 Sep 6. doi: 10.1002/jcb.27544.
|
59. |
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm, 2015, 93: 52-79.
|
60. |
Sulaiman A, McGarry S, El-Sahli S, et al. Co-targeting bulk tumor and CSCs in clinically translatable TNBC patient-derived xenografts via combination nanotherapy. Mol Cancer Ther, 2019, 18(10): 1755-1764.
|
61. |
El-Sahli S, Hua K, Sulaiman A, et al. A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death Dis, 2021, 12(1): 8. doi: 10.1038/s41419-020-03308-w.
|