1. |
Wu ZY, Trenner M, Boon RA, et al. Long noncoding RNAs in key cellular processes involved in aortic aneurysms. Atherosclerosis, 2020, 292: 112-118.
|
2. |
Eckstein HH, Maegdefessel L. Linking obesity with abdominal aortic aneurysm development. Eur Heart J, 2020, 41(26): 2469-2471.
|
3. |
李拥军, 陈作观, 张玮. 腔内治疗时代腹主动脉瘤传统开放手术的地位和意义. 中华血管外科杂志, 2020, 5(1): 10-13.
|
4. |
Wu ZY, Chen ZG, Diao YP, et al. Endovascular repair of complex aortoiliac aneurysm with the sandwich technique in sixteen patients. Ann Vasc Surg, 2019, 54: 233-239.
|
5. |
Wu ZY, Chen ZG, Ma L, et al. Outcomes of chimney and/or periscope techniques in the endovascular management of complex aortic pathologies. Chin Med J (Engl), 2017, 130(17): 2095-2100.
|
6. |
Chen ZG, Tan SP, Diao YP, et al. The long-term outcomes of open and endovascular repair for abdominal aortic aneurysm: A meta-analysis. Asian J Surg, 2019, 42(10): 899-906.
|
7. |
Maegdefessel L, Spin JM, Adam M, et al. Micromanaging abdominal aortic aneurysms. Int J Mol Sci, 2013, 14(7): 14374-14394.
|
8. |
Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol, 2019, 16(4): 225-242.
|
9. |
Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet, 2019, 20(11): 631-656.
|
10. |
Li DY, Busch A, Jin H, et al. H19 induces abdominal aortic aneurysm development and progression. Circulation, 2018, 138(15): 1551-1568.
|
11. |
Vallejo J, Cochain C, Zernecke A, et al. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-seq. Cardiovasc Res, 2021: cvab260.
|
12. |
Fernandez DM, Rahman AH, Fernandez NF, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med, 2019, 25(10): 1576-1588.
|
13. |
Yang H, Zhou T, Stranz A, et al. Single-cell RNA sequencing reveals heterogeneity of vascular cells in early stage murine abdominal aortic aneurysm-brief report. Arterioscler Thromb Vasc Biol, 2021, 41(3): 1158-1166.
|
14. |
Zhao G, Lu H, Chang Z, et al. Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovasc Res, 2021, 117(5): 1402-1416.
|
15. |
Gao Q, Yu J, Chen Z, et al. The characteristics of peripheral blood mononuclear cells in takayasu arteritis by single cell RNA sequencing. Authorea, 2021.
|
16. |
Lysgaard Poulsen J, Stubbe J, Lindholt JS. Animal models used to explore abdominal aortic aneurysms: A systematic review. Eur J Vasc Endovasc Surg, 2016, 52(4): 487-499.
|
17. |
Hadi T, Boytard L, Silvestro M, et al. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat Commun, 2018, 9(1): 5022.
|
18. |
Boytard L, Hadi T, Silvestro M, et al. Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nat Commun, 2020, 11(1): 4311.
|
19. |
Kalluri AS, Vellarikkal SK, Edelman ER, et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation, 2019, 140(2): 147-163.
|
20. |
李林, 狄长安, 李丽亚, 等. 腹主动脉瘤动物模型的建立. 腹腔镜外科杂志, 2014, 12(3): 225-228.
|
21. |
Wu Z. Single-cell RNA sequencing analysis revealed cellular heterogeneity of human abdominal aortic aneurysm. München: Technische Universität München, 2021.
|
22. |
Davis FM, Tsoi LC, Melvin WJ, et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. J Exp Med, 2021, 218(6): e20201839.
|
23. |
Wirka RC, Wagh D, Paik DT, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med, 2019, 25(8): 1280-1289.
|
24. |
Pan H, Xue C, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation, 2020, 142(21): 2060-2075.
|
25. |
Pedroza AJ, Tashima Y, Shad R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in marfan syndrome aortic aneurysm. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2195-2211.
|
26. |
Chen Z, Zhang H, Bai Y, et al. Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure. Sci China Life Sci, 2021, 64(10): 1677-1690.
|
27. |
Li F, Yan K, Wu L, et al. Single-cell RNA-seq reveals cellular heterogeneity of mouse carotid artery under disturbed flow. Cell Death Discov, 2021, 7(1): 180.
|
28. |
Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biol, 2020, 21(1): 31.
|
29. |
Regev A, Teichmann SA, Lander ES, et al. The human cell atlas. Elife, 2017, 6: e27041.
|
30. |
Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 2016, 353(6294): 78-82.
|
31. |
Gyllborg D, Langseth CM, Qian X, et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res, 2020, 48(19): e112.
|
32. |
Burgess DJ. Spatial transcriptomics coming of age. Nat Rev Genet, 2019, 20(6): 317.
|
33. |
Krausgruber T, Fortelny N, Fife-Gernedl V, et al. Structural cells are key regulators of organ-specific immune responses. Nature, 2020, 583(7815): 296-302.
|