1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Chen Z, Xie H, Hu M, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res, 2020, 10(9): 2993-3036.
|
3. |
Anderson NM, Simon MC. The tumor microenvironment. Curr Biol, 2020, 30(16): R921-R925. doi: 10.1016/j.cub.2020.06.081.
|
4. |
Fu Y, Liu S, Zeng S, et al. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res, 2019, 38(1): 396. doi: 10.1186/s13046-019-1396-4.
|
5. |
Rohr-Udilova N, Klinglmüller F, Schulte-Hermann R, et al. Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma. Sci Rep, 2018, 8(1): 6220. doi: 10.1038/s41598-018-24437-5.
|
6. |
Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018, 68(3): 1025-1041.
|
7. |
Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut, 2019, 68(5): 916-927.
|
8. |
Zhang YL, Li Q, Yang XM, et al. SPON2 promotes M1-like macrophage recruitment and inhibits hepatocellular carcinoma metastasis by distinct integrin-rho GTPase-Hippo pathways. Cancer Res, 2018, 78(9): 2305-2317.
|
9. |
Jin Z, Lei L, Lin D, et al. IL-33 released in the liver inhibits tumor growth via promotion of CD4+ and CD8+ T cell responses in hepatocellular carcinoma. J Immunol, 2018, 201(12): 3770-3779.
|
10. |
Xu X, Tan Y, Qian Y, et al. Clinicopathologic and prognostic significance of tumor-infiltrating CD8+ T cells in patients with hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore), 2019, 98(2): e13923. doi: 10.1097/MD.0000000000013923.
|
11. |
Brunner SM, Itzel T, Rubner C, et al. Tumor-infiltrating B cells producing antitumor active immunoglobulins in resected HCC prolong patient survival. Oncotarget, 2017, 8(41): 71002-71011.
|
12. |
Chen Y, Wen H, Zhou C, et al. TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res, 2019, 378(1): 41-50.
|
13. |
Park H, Jung JH, Jung MK, et al. Effects of transarterial chemoembolization on regulatory T cell and its subpopulations in patients with hepatocellular carcinoma. Hepatol Int, 2020, 14(2): 249-258.
|
14. |
Shao Y, Lo CM, Ling CC, et al. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett, 2014, 355(2): 264-272.
|
15. |
Tian Z, Hou X, Liu W, et al. Macrophages and hepatocellular carcinoma. Cell Biosci, 2019, 9: 79. doi: 10.1186/s13578-019-0342-7.
|
16. |
Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol, 2020, 877: 173090. doi: 10.1016/j.ejphar.2020.173090.
|
17. |
Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology, 2014, 59(5): 2034-2042.
|
18. |
Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol, 2011, 12(11): 1035-1044.
|
19. |
Yin Z, Ma T, Lin Y, et al. IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem, 2018, 119(11): 9419-9432.
|
20. |
Zhou B, Li C, Yang Y, et al. RIG-Ⅰ promotes cell death in hepatocellular carcinoma by inducing m1 polarization of perineal macrophages through the RIG-Ⅰ/MAVS/NF-κB pathway. Onco Targets Ther, 2020, 13: 8783-8794.
|
21. |
Zhang Z, Zhu Y, Xu D, et al. IFN-α facilitates the effect of sorafenib via shifting the M2-like polarization of TAM in hepatocellular carcinoma. Am J Transl Res, 2021, 13(1): 301-313.
|
22. |
Zhao X, Wang X, You Y, et al. Nogo-B fosters HCC progression by enhancing Yap/Taz-mediated tumor-associated macrophages M2 polarization. Exp Cell Res, 2020, 391(1): 111979. doi: 10.1016/j.yexcr.2020.111979.
|
23. |
Xun X, Zhang C, Wang S, et al. Cyclooxygenase-2 expressed hepatocellular carcinoma induces cytotoxic T lymphocytes exhaustion through M2 macrophage polarization. Am J Transl Res, 2021, 13(5): 4360-4375.
|
24. |
Xu D, Wang Y, Wu J, et al. ECT2 overexpression promotes the polarization of tumor-associated macrophages in hepatocellular carcinoma via the ECT2/PLK1/PTEN pathway. Cell Death Dis, 2021, 12(2): 162. doi: 10.1038/s41419-021-03450-z.
|
25. |
Li W, Xin X, Li X, et al. Exosomes secreted by M2 macrophages promote cancer stemness of hepatocellular carcinoma via the miR-27a-3p/TXNIP pathways. Int Immunopharmacol, 2021, 101(Pt A): 107585. doi: 10.1016/j.intimp.2021.107585.
|
26. |
Wang L, Fu Y, Chu Y. Regulatory B cells. Adv Exp Med Biol, 2020, 1254: 87-103.
|
27. |
Garnelo M, Tan A, Her Z, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut, 2017, 66(2): 342-351.
|
28. |
Largeot A, Pagano G, Gonder S, et al. The B-side of cancer immunity: the underrated tune. Cells, 2019, 8(5): 449. doi: 10.3390/cells8050449.
|
29. |
Xue H, Lin F, Tan H, et al. Overrepresentation of IL-10-expressing B cells suppresses cytotoxic CD4+ T cell activity in HBV-induced hepatocellular carcinoma. PLoS One, 2016, 11(5): e0154815. doi: 10.1371/journal.pone.0154815.
|
30. |
Hao J, Li M, Zhang T, et al. Prognostic value of tumor-infiltrating lymphocytes differs depending on lymphocyte subsets in esophageal squamous cell carcinoma: an updated meta-analysis. Front Oncol, 2020, 10: 614. doi: 10.3389/fonc.2020.00614.
|
31. |
Zhao Y, Ge X, He J, et al. The prognostic value of tumor-infiltrating lymphocytes in colorectal cancer differs by anatomical subsite: a systematic review and meta-analysis. World J Surg Oncol, 2019, 17(1): 85. doi: 10.1186/s12957-019-1621-9.
|
32. |
Yarchoan M, Xing D, Luan L, et al. Characterization of the immune microenvironment in hepatocellular carcinoma. Clin Cancer Res, 2017, 23(23): 7333-7339.
|
33. |
Huo J, Wu L, Zang Y. Identification and validation of a novel immune-related signature associated with macrophages and CD8 T cell infiltration predicting overall survival for hepatocellular carcinoma. BMC Med Genomics, 2021, 14(1): 232. doi: 10.1186/12920-021-01081-z.
|
34. |
Hofmann M, Tauber C, Hensel N, et al. CD8+T cell responses during HCV infection and HCC. J Clin Med, 2021, 10(5): 991. doi: 10.3390/jcm10050991.
|
35. |
Ma C, Kesarwala AH, Eggert T, et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature, 2016, 531(7593): 253-257.
|
36. |
Mossanen JC, Kohlhepp M, Wehr A, et al. CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4 + T-cell-dependent control of senescence. Gastroenterology, 2019, 156(6): 1877-1889.e4.
|
37. |
Brown ZJ, Fu Q, Ma C, et al. Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4+ T cell apoptosis promoting HCC development. Cell Death Dis, 2018, 9(6): 620. doi: 10.1038/s41419-018-0687-6.
|
38. |
Qi X, Yang M, Ma L, et al. Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response. J Immunother Cancer, 2020, 8(2): e001038. doi: 10.1136/jitc-2020-001038.
|
39. |
Gao Q, Zhou J, Wang XY, et al. Infiltrating memory/senescent T cell ratio predicts extrahepatic metastasis of hepatocellular carcinoma. Ann Surg Oncol, 2012, 19(2): 455-466.
|
40. |
Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression-implications for anticancer therapy. Nat Rev Clin Oncol, 2019, 16(6): 356-371.
|
41. |
Zhang S, Gan X, Qiu J, et al. IL-10 derived from hepatocarcinoma cells improves human induced regulatory T cells function via JAK1/STAT5 pathway in tumor microenvironment. Mol Immunol, 2021, 133: 163-172.
|
42. |
Ren Z, Yue Y, Zhang Y, et al. Changes in the peripheral blood Treg cell proportion in hepatocellular carcinoma patients after transarterial chemoembolization with microparticles. Front Immunol, 2021, 12: 624789. doi: 10.3389/fimmu.2021.624789.
|
43. |
Macek Jilkova Z, Aspord C, Decaens T. Predictive factors for response to PD-1/PD-L1 checkpoint inhibition in the field of hepatocellular carcinoma: current status and challenges. Cancers (Basel), 2019, 11(10): 1554. doi: 10.3390/cancers11101554.
|
44. |
Ma LJ, Feng FL, Dong LQ, et al. Clinical significance of PD-1/PD-Ls gene amplification and overexpression in patients with hepatocellular carcinoma. Theranostics, 2018, 8(20): 5690-5702.
|
45. |
Deng H, Kan A, Lyu N, et al. Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma. Liver Cancer, 2020, 9(3): 338-357.
|
46. |
Huang CY, Wang Y, Luo GY, et al. Relationship between PD-L1 expression and CD8+ T-cell immune responses in hepatocellular carcinoma. J Immunother, 2017, 40(9): 323-333.
|
47. |
Xiao X, Lao XM, Chen MM, et al. PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov, 2016, 6(5): 546-559.
|
48. |
Xu G, Feng D, Yao Y, et al. Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene, 2020, 39(7): 1429-1444.
|
49. |
Park DJ, Sung PS, Lee GW, et al. Preferential expression of programmed death ligand 1 protein in tumor-associated macrophages and its potential role in immunotherapy for hepatocellular carcinoma. Int J Mol Sci, 2021, 22(9): 4710. doi: 10.3390/ijms22094710.
|