1. |
Baddock HT, Yosaatmadja Y, Newman JA, et al. The SNM1A DNA repair nuclease. DNA Repair (Amst), 2020, 95: 102941. doi: 10.1016/j.dnarep.2020.102941.
|
2. |
Rycenga HB, Long DT. The evolving role of DNA inter-strand crosslinks in chemotherapy. Curr Opin Pharmacol, 2018, 41: 20-26.
|
3. |
Basourakos SP, Li L, Aparicio AM, et al. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions. Curr Med Chem, 2017, 24(15): 1586-1606.
|
4. |
Nikolova T, Roos WP, Krämer OH, et al. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer, 2017, 1868(1): 29-39.
|
5. |
Munari FM, Guecheva TN, Bonatto D, et al. New features on Pso2 protein family in DNA interstrand cross-link repair and in the maintenance of genomic integrity in saccharomyces cerevisiae. Fungal Genet Biol, 2013, 60: 122-132.
|
6. |
Demuth I, Bradshaw PS, Lindner A, et al. Endogenous hSNM1B/Apollo interacts with TRF2 and stimulates ATM in response to ionizing radiation. DNA Repair (Amst), 2008, 7(8): 1192-1201.
|
7. |
van Overbeek M, de Lange T. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol, 2006, 16(13): 1295-1302.
|
8. |
Giannelli G, Koudelkova P, Dituri F, et al. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol, 2016, 65(4): 798-808.
|
9. |
Enderle J, Dorn A, Puchta H. DNA- and DNA-protein-crosslink repair in plants. Int J Mol Sci, 2019, 20(17): 4304. doi: 10.3390/ijms20174304.
|
10. |
Wang H, Xiang D, Liu B, et al. Inadequate DNA damage repair promotes mammary transdifferentiation, leading to BRCA1 breast cancer. Cell, 2019, 178(1): 135-151.
|
11. |
Guohui S, Lijiao Z, Rugang Z. The induction and repair of DNA interstrand crosslinks and implications in cancer chemotherapy. Anticancer Agents Med Chem, 2015, 16(2): 221-246.
|
12. |
Bae JB, Mukhopadhyay SS, Liu L, et al. Snm1B/Apollo mediates replication fork collapse and S phase checkpoint activation in response to DNA interstrand cross-links. Oncogene, 2008, 27(37): 5045-5056.
|
13. |
Ishiai M, Kimura M, Namikoshi K, et al. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol Cell Biol, 2004, 24(24): 10733-10741.
|
14. |
Demuth I, Digweed M, Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene, 2004, 23(53): 8611-8618.
|
15. |
Mason JM, Sekiguchi JM. Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks. Hum Mol Genet, 2011, 20(13): 2549-2559.
|
16. |
Jin MH, Oh DY. ATM in DNA repair in cancer. Pharmacol Ther, 2019, 203: 107391. doi: 10.1016/j.pharmthera.2019.07.002.
|
17. |
Mason JM, Das I, Arlt M, et al. The SNM1B/Apollo DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability. Hum Mol Genet, 2013, 22(24): 4901-4913.
|
18. |
Karami S, Han Y, Pande M, et al. Telomere structure and maintenance gene variants and risk of five cancer types. Int J Cancer, 2016, 139(12): 2655-2670.
|
19. |
Lee YK, Lim J, Yoon SY, et al. Promotion of cell death in cisplatin-resistant ovarian cancer cells through KDM1B-DCLRE1B modulation. Int J Mol Sci, 2019, 20(10): 2443. doi: 10.3390/ijms20102443.
|
20. |
Baddock HT, Newman JA, Yosaatmadja Y, et al. A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Res, 2021, 49(16): 9294-9309.
|
21. |
Yosaatmadja Y, Baddock HT, Newman JA, et al. Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition. Nucleic Acids Res, 2021, 49(16): 9310-9326.
|
22. |
Lobo-Alves SC, de Oliveira LA, Petzl-Erler ML. Region 1p132 including the RSBN1, PTPN22, AP4B1 and long non-coding RNA genes does not bear risk factors for endemic pemphigus foliaceus (fogo selvagem). Int J Immunogenet, 2019, 46(3): 139-145.
|
23. |
Stringer JR, Counter CM. Snm1B interacts with PSF2. PLoS One, 2012, 7(11): e49626. doi: 10.1371/journal.pone.0049626.
|
24. |
Jiang X, Wang L, Xie S, et al. Long noncoding RNA MEG3 blocks telomerase activity in human liver cancer stem cells epigenetically. Stem Cell Res Ther, 2020, 11(1): 518. doi: 10.1186/s13287-020-02036-4.
|
25. |
Montanari M, Rossetti S, Cavaliere C, et al. Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget, 2017, 8(21): 35376-35389.
|
26. |
Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell, 2019, 49(3): 361-374.
|
27. |
Kim YN, Koo KH, Sung JY, et al. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol, 2012, 2012: 306879. doi: 10.1155/2012/306879 .
|
28. |
Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med, 2019, 216(5): 1016-1026.
|