1. |
Søgaard M, Nielsen PB, Skjøth F, et al. Temporal changes in secondary prevention and cardiovascular outcomes after revascularization for peripheral arterial disease in Denmark: A nationwide cohort study. Circulation, 2021, 143(9): 907-920.
|
2. |
Chou TH, Stacy MR. Clinical applications for radiotracer imaging of lower extremity peripheral arterial disease and critical limb ischemia. Mol Imaging Biol, 2020, 22(2): 245-255.
|
3. |
Marsico G, Martin-Saldaña S, Pandit A. Therapeutic biomaterial approaches to alleviate chronic limb threatening ischemia. Adv Sci (Weinh), 2021, 8(7): 2003119. doi: 10.1002/advs.202003119.
|
4. |
Gao W, Chen D, Liu G, et al. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther, 2019, 10(1): 140. doi: 10.1186/s13287-019-1254-5.
|
5. |
Duan J, Chen Z, Liang X, et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials, 2020, 255: 120199. doi: 10.1016/j.biomaterials.2020.120199.
|
6. |
Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest, 1999, 103(9): 1231-1236.
|
7. |
Chen Z, Duan J, Diao Y, et al. ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact Mater, 2020, 6(1): 1-11.
|
8. |
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis, 2021, 24(2): 213-236.
|
9. |
Simons M. Angiogenesis: where do we stand now? Circulation, 2005, 111(12): 1556-1566.
|
10. |
Monaghan RM, Page DJ, Ostergaard P, et al. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc Res, 2021, 117(8): 1877-1890.
|
11. |
Kitrou P, Karnabatidis D, Brountzos E, et al. Gene-based therapies in patients with critical limb ischemia. Expert Opin Biol Ther, 2017, 17(4): 449-456.
|
12. |
Hutchings G, Kruszyna Ł, Nawrocki MJ, et al. Molecular mechanisms associated with ROS-dependent angiogenesis in lower extremity artery disease. Antioxidants (Basel), 2021, 10(5): 735. doi: 10.3390/antiox10050735.
|
13. |
Luttun A, Carmeliet P. De novo vasculogenesis in the heart. Cardiovasc Res, 2003, 58(2): 378-389.
|
14. |
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302): 964-967.
|
15. |
Rajagopalan S, Olin J, Deitcher S, et al. Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase Ⅰ dose-escalation experience. Circulation, 2007, 115(10): 1234-1243.
|
16. |
Ido A, Moriuchi A, Numata M, et al. Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase Ⅰ / Ⅱ clinical trial, following preclinical studies to ensure safety. J Transl Med, 2011, 9: 55.
|
17. |
Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation, 1998, 97(12): 1114-1123.
|
18. |
Mäkinen K, Manninen H, Hedman M, et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase Ⅱ study. Mol Ther, 2002, 6(1): 127-133.
|
19. |
Rajagopalan S, Mohler ER, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase Ⅱ randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation, 2003, 108(16): 1933-1938.
|
20. |
Kusumanto YH, van Weel V, Mulder NH, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther, 2006, 17(6): 683-691.
|
21. |
Comerota AJ, Throm RC, Miller KA, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase Ⅰ trial. J Vasc Surg, 2002, 35(5): 930-936.
|
22. |
Nikol S, Baumgartner I, Van Belle E, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther, 2008, 16(5): 972-978.
|
23. |
Belch J, Hiatt WR, Baumgartner I, et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet, 2011, 377(9781): 1929-1937.
|
24. |
Morishita R, Makino H, Aoki M, et al. Phase Ⅰ / Ⅱ a clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler Thromb Vasc Biol, 2011, 31(3): 713-720.
|
25. |
Makino H, Aoki M, Hashiya N, et al. Long-term follow-up evaluation of results from clinical trial using hepatocyte growth factor gene to treat severe peripheral arterial disease. Arterioscler Thromb Vasc Biol, 2012, 32(10): 2503-2509.
|
26. |
Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation, 2008, 118(1): 58-65.
|
27. |
Shigematsu H, Yasuda K, Iwai T, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther, 2010, 17(9): 1152-1161.
|
28. |
Räsänen M, Sultan I, Paech J, et al. VEGF-B promotes endocardium-derived coronary vessel development and cardiac regeneration. Circulation, 2021, 143(1): 65-77.
|
29. |
Ehrbar M, Djonov VG, Schnell C, et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res, 2004, 94(8): 1124-1132.
|
30. |
Mac Gabhann F, Qutub AA, Annex BH, et al. Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip Rev Syst Biol Med, 2010, 2(6): 694-707.
|
31. |
Mac Gabhann F, Annex BH, Popel AS. Gene therapy from the perspective of systems biology. Curr Opin Mol Ther, 2010, 12(5): 570-577.
|
32. |
Sanada F, Taniyama Y, Azuma J, et al. Therapeutic angiogenesis by gene therapy for critical limb ischemia: choice of biological agent. Immunol Endocr Metab Agents Med Chem, 2014, 14(1): 32-39.
|
33. |
Sanada F, Taniyama Y, Kanbara Y, et al. Gene therapy in peripheral artery disease. Expert Opin Biol Ther, 2015, 15(3): 381-390.
|
34. |
Taniyama Y, Morishita R, Hiraoka K, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation, 2001, 104(19): 2344-2350.
|
35. |
Morishita R, Aoki M, Hashiya N, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension, 2004, 44(2): 203-209.
|
36. |
Cui S, Guo L, Li X, et al. Clinical safety and preliminary efficacy of plasmid pUDK-HGF expressing human hepatocyte growth factor (HGF) in patients with critical limb ischemia. Eur J Vasc Endovasc Surg, 2015, 50(4): 494-501.
|
37. |
Banai S, Shweiki D, Pinson A, et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res, 1994, 28(8): 1176-1179.
|
38. |
Gonçalves LM. Fibroblast growth factor-mediated angiogenesis for the treatment of ischemia. Lessons learned from experimental models and early human experience. Rev Port Cardiol, 1998, 17 Suppl 2: Ⅱ11-Ⅱ20.
|
39. |
Semenza GL. Life with oxygen. Science, 2007, 318(5847): 62-64.
|
40. |
Gui L, Chen Y, Diao Y, et al. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia. Mater Today Bio, 2021, 13: 100192. doi: 10.1016/j.mtbio.2021.100192 .
|
41. |
Creager MA, Olin JW, Belch JJ, et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation, 2011, 124(16): 1765-1773.
|
42. |
Hashem FM, Nasr M, Khairy A, et al. In vitro cytotoxicity and transfection efficiency of pDNA encoded p53 gene-loaded chitosan-sodium deoxycholate nanoparticles. Int J Nanomedicine, 2019, 14: 4123-4131.
|
43. |
Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1(5): 16014. doi: 10.1038/natrevmats.2016.14.
|
44. |
Virus used in gene therapies may pose cancer risk, dog study hints. 6 JAN 2020.https://www.science.org/content/article/virus-used-gene-therapies-may-pose-cancer-risk-dog-study-hints.
|
45. |
Hardee CL, Arévalo-Soliz LM, Hornstein BD, et al. Advances in non-viral DNA vectors for gene therapy. Genes (Basel), 2017, 8(2): 65. doi: 10.3390/genes8020065.
|
46. |
Jin L, Zeng X, Liu M, et al. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics, 2014, 4(3): 240-255.
|
47. |
Pezzoli D, Kajaste-Rudnitski A, Chiesa R, et al. Lipid-based nanoparticles as nonviral gene delivery vectors. Methods Mol Biol, 2013, 1025: 269-279.
|
48. |
Natsume A, Mizuno M, Ryuke Y, et al. Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther, 1999, 6(9): 1626-1633.
|
49. |
Fisher RK, Mattern-Schain SI, Best MD, et al. Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. J Surg Res, 2017, 219: 136-144.
|
50. |
Arima H, Motoyama K, Higashi T. Polyamidoamine dendrimer conjugates with cyclodextrins as novel carriers for DNA, shRNA and siRNA. Pharmaceutics, 2012, 4(1): 130-148.
|
51. |
Fang Z, Ge X, Chen X, et al. Enhancement of sciatic nerve regeneration with dual delivery of vascular endothelial growth factor and nerve growth factor genes. J Nanobiotechnology, 2020, 18(1): 46. doi: 10.1186/s12951-020-00606-5.
|
52. |
Chen K, Cao X, Li M, et al. A TRAIL-delivered lipoprotein-bioinspired nanovector engineering stem cell-based platform for inhibition of lung metastasis of melanoma. Theranostics, 2019, 9(10): 2984-2998.
|
53. |
Liu X, Mo Y, Liu X, et al. Synthesis, characterisation and preliminary investigation of the haemocompatibility of polyethyleneimine-grafted carboxymethyl chitosan for gene delivery. Mater Sci Eng C Mater Biol Appl, 2016, 62: 173-182.
|
54. |
Huo H, Gao Y, Wang Y, et al. Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain. J Colloid Interface Sci, 2015, 447: 8-15.
|
55. |
Encabo-Berzosa MM, Sancho-Albero M, Sebastian V, et al. Polymer functionalized gold nanoparticles as nonviral gene delivery reagents. J Gene Med, 2017, 19(6-7). doi: 10.1002/jgm.2964.
|
56. |
Tian A, Yang C, Zhu B, et al. Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice. Can J Physiol Pharmacol, 2018, 96(12): 1318-1327.
|
57. |
Wu X, Wu M, Zhao JX. Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomedicine, 2014, 10(2): 297-312.
|
58. |
Sun L, Wang D, Chen Y, et al. Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials, 2017, 133: 219-228.
|