1. |
Xiao MS, Ai Y, Wilusz JE. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol, 2020, 30(3): 226-240.
|
2. |
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(5209): 415-417.
|
3. |
Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer. Mol Cancer, 2020, 19(1): 30. doi: 10.1186/s12943-020-1135-7.
|
4. |
Kos A, Dijkema R, Arnberg AC, et al. The hepatitis delta (delta) virus possesses a circular RNA. Nature, 1986, 323(6088): 558-560.
|
5. |
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136(4): 731-745.
|
6. |
Merrick WC, Pavitt GD. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb Perspect Biol, 2018, 10(12): a033092. doi: 10.1101/cshperspect.a033092.
|
7. |
Smith RCL, Kanellos G, Vlahov N, et al. Translation initiation in cancer at a glance. J Cell Sci, 2021, 134(1): jcs248476. doi: 10.1242/jcs.248476.
|
8. |
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol, 2020, 17(9): 1239-1251.
|
9. |
He L, Man C, Xiang S, et al. Circular RNAs′ cap-independent translation protein and its roles in carcinomas. Mol Cancer, 2021, 20(1): 119. doi: 10.1186/s12943-021-01417-4.
|
10. |
Jang SK, Kräusslich HG, Nicklin MJ, et al. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol, 1988, 62(8): 2636-2643.
|
11. |
Lang KJ, Kappel A, Goodall GJ. Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell, 2002, 13(5): 1792-1801.
|
12. |
Shatsky IN, Dmitriev SE, Terenin IM, et al. Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells, 2010, 30(4): 285-293.
|
13. |
Chen X, Han P, Zhou T, et al. circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep, 2016, 6: 34985. doi: 10.1038/srep34985.
|
14. |
Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol, 2019, 11(10): 911-919.
|
15. |
Lamphear BJ, Kirchweger R, Skern T, et al. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem, 1995, 270(37): 21975-21983.
|
16. |
Haizel SA, Bhardwaj U, Gonzalez RL, et al. 5′-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J Biol Chem, 2020, 295(33): 11693-11706.
|
17. |
Huang W, Ling Y, Zhang S, et al. TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res, 2021, 49(D1): D236-D242.
|
18. |
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N 6-methyladenosine. Cell Res, 2017, 27(5): 626-641.
|
19. |
Meyer KD, Patil DP, Zhou J, et al. 5′ UTR m(6)A promotes cap-independent translation. Cell, 2015, 163(4): 999. doi: 10.1016/j.cell.2015.10.012-1010.
|
20. |
Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep, 2015, 5: 16435. doi: 10.1038/srep16435.
|
21. |
Perriman R, Ares M. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo . RNA, 1998, 4(9): 1047-1054.
|
22. |
Liu Y, Li Z, Zhang M, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol, 2021, 23(5): 743-756.
|
23. |
Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst, 2018, 110(3): 304-315.
|
24. |
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37.
|
25. |
Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs. Mol Cell, 2017, 66(1): 9-21.
|
26. |
Jiang T, Xia Y, Lv J, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer, 2021, 20(1): 66. doi: 10.1186/s12943-021-01358-y.
|
27. |
Zhang Y, Jiang J, Zhang J, et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer, 2021, 20(1): 101. doi: 10.1186/s12943-021-01390-y.
|
28. |
Peng Y, Xu Y, Zhang X, et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer, 2021, 20(1): 158. doi: 10.1186/s12943-021-01457-w.
|
29. |
Liang WC, Wong CW, Liang PP, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol, 2019, 20(1): 84. doi: 10.1186/s13059-019-1685-4.
|
30. |
Li Y, Chen B, Zhao J, et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci (Weinh), 2021, 8(13): 2001701. doi: 10.1002/advs.202001701.
|
31. |
Li P, Song R, Yin F, et al. circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther, 2022, 30(1): 431-447.
|
32. |
Li H, Lan T, Liu H, et al. IL-6-induced cGGNBP2 encodes a protein to promote cell growth and metastasis in intrahepatic cholangiocarcinoma. Hepatology, 2021, Online ahead of print. doi: 10.1002/hep.32232.
|
33. |
Zheng X, Chen L, Zhou Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer, 2019, 18(1): 47. doi: 10.1186/s12943-019-1010-6.
|
34. |
Pan Z, Cai J, Lin J, et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer, 2020, 19(1): 71. doi: 10.1186/s12943-020-01179-5.
|
35. |
Zhi X, Zhang J, Cheng Z, et al. circLgr4 drives colorectal tumorigenesis and invasion through Lgr4-targeting peptide. Int J Cancer, 2019, Epub 2021 Nov 25. doi: 10.1002/ijc.32549.
|
36. |
Liang ZX, Liu HS, Xiong L, et al. A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer, 2021, 20(1): 103. doi: 10.1186/s12943-021-01404-9.
|
37. |
Wang L, Zhou J, Zhang C, et al. A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK6. Clin Transl Med, 2021, 11(10): e613. doi: 10.1002/ctm2.613.
|
38. |
Wang J, Pan W. The biological role of the collagen alpha-3 (Ⅵ) chain and its cleaved C5 domain fragment endotrophin in cancer. Onco Targets Ther, 2020, 13: 5779-5793.
|
39. |
Zhang C, Zhou X, Geng X, et al. Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis, 2021, 12(5): 443. doi: 10.1038/s41419-021-03714-8.
|
40. |
Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons. Cell, 1991, 64(3): 607-613.
|
41. |
Wen SY, Qadir J, Yang BB. Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol Med, 2022, Online ahead of print. doi: 10.1016/j.molmed.2022.03.003.
|
42. |
Qu L, Yi Z, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 2022, Online ahead of print. doi: 10.1016/j.cell.2022.03.044.
|