1. |
McMillan D, Martinez-Fleites C, Porter J, et al. Structural insights into the disruption of TNF-TNFR1 signalling by small molecules stabilising a distorted TNF. Nat Commun, 2021, 12(1): 582. doi:10.1038/s41467-020-20828-3.
|
2. |
Brinkworth JF, Valizadegan N. Sepsis and the evolution of human increased sensitivity to lipopolysaccharide. Evol Anthropol, 2021, 30(2): 141-157.
|
3. |
Günther J, Vogt N, Hampel K, et al. Identification of two forms of TNF tolerance in human monocytes: differential inhibition of NF-κB/AP-1- and PP1-associated signaling. J Immunol, 2014, 192(7): 3143-3155.
|
4. |
Welz B, Bikker R, Junemann J, et al. Proteome and phosphoproteome analysis in TNF long term-exposed primary human monocytes. Int J Mol Sci, 2019, 20(5): 1241. doi: 10.3390/ijms20051241.
|
5. |
Bernard Q, Hu LT. Innate immune memory to repeated exposure Borrelia burgdorferi correlates with murine in vivo inflammatory phenotypes. J Immunol, 2020, 205(12): 3383-3389.
|
6. |
Li LL, Dai B, Sun YH, et al. Monocytes undergo functional reprogramming to generate immunosuppression through HIF-1α signaling pathway in the late phase of sepsis. Mediators Inflamm, 2020, 2020: 4235909. doi:10.1155/2020/4235909.
|
7. |
Piras IS, Gerhard GS, DiStefano JK. Palmitate and fructose interact to induce human hepatocytes to produce pro-fibrotic transcriptional responses in hepatic stellate cells exposed to conditioned media. Cell Physiol Biochem, 2020, 54(5): 1068-1082.
|
8. |
Pietrzak J, Gronkowska K, Robaszkiewicz A. PARP traps rescue the pro-inflammatory response of human macrophages in the in vitro model of LPS-induced tolerance. Pharmaceuticals (Basel), 2021, 14(2): 170. doi:10.3390/ph14020170.
|
9. |
Zhao S, Jiang J, Jing Y, et al. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity. Cell Death Dis, 2020, 11(1): 70. doi:10.1038/s41419-020-2264-z.
|
10. |
Mul Fedele ML, Aiello I, Caldart CS, et al. Differential thermoregulatory and inflammatory patterns in the circadian response to LPS-induced septic shock. Front Cell Infect Microbiol, 2020, 10: 100. doi:10.3389/fcimb.2020.00100.
|
11. |
Huber R, Bikker R, Welz B, et al. TNF tolerance in monocytes and macrophages: characteristics and molecular mechanisms. J Immunol Res, 2017, 2017: 9570129. doi:10.1155/2017/9570129.
|
12. |
VanderVeen BN, Fix DK, Carson JA. Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: a role for inflammation. Oxid Med Cell Longev, 2017, 2017: 3292087. doi:10.1155/2017/3292087.
|
13. |
Mo R, Feng XX, Wu YN, et al. Hepatocytes paradoxically affect intrahepatic IFN-γ production in autoimmune hepatitis due to Gal-9 expression and TLR2/4 ligand release. Mol Immunol, 2020, 123: 106-115.
|
14. |
Yue Y, Wang Y, Li D, et al. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice. J Endocrinol, 2015, 224(1): 37-47.
|
15. |
Ozkaynak MF, Gilman AL, London WB, et al. A Comprehensive safety trial of chimeric antibody 14.18 with GM-CSF, IL-2, and isotretinoin in high-risk neuroblastoma patients following myeloablative therapy: children's oncology group study ANBL0931. Front Immunol, 2018, 9: 1355. doi:10.3389/fimmu.2018.01355.
|
16. |
Tiegs G, Horst AK. TNF in the liver: targeting a central player in inflammation. Semin Immunopathol, 2022, 44(4): 445-459.
|
17. |
Stutte S, Ruf J, Kugler I, et al. Type Ⅰ interferon mediated induction of somatostatin leads to suppression of ghrelin and appetite thereby promoting viral immunity in mice. Brain Behav Immun, 2021, 95: 429-443.
|
18. |
Dhani S, Zhao Y, Zhivotovsky B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis, 2021, 12(10): 949. doi:10.1038/s41419-021-04240-3.
|
19. |
Akashi-Takamura S, Furuta T, Takahashi K, et al. Agonistic antibody to TLR4/MD-2 protects mice from acute lethal hepatitis induced by TNF-alpha. J Immunol, 2006, 176(7): 4244-4251.
|
20. |
Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol, 2018, 175(20): 3859-3875.
|
21. |
Hoffmeister L, Diekmann M, Brand K, et al. GSK3: a kinase balancing promotion and resolution of inflammation. Cells, 2020, 9(4): 820. doi:10.3390/cells9040820.
|
22. |
Hou XF, Pan H, Xu LH, et al. Piperine suppresses the expression of CXCL8 in lipopolysaccharide-activated SW480 and HT-29 cells via downregulating the mitogen-activated protein kinase pathways. Inflammation, 2015, 38(3): 1093-1102.
|
23. |
Wang Z, Sheng C, Kan G, et al. RNAi screening identifies that TEX10 promotes the proliferation of colorectal cancer cells by increasing NF-κB activation. Adv Sci (Weinh), 2020, 7(17): 2000593. doi: 10.1002/advs.202000593.
|
24. |
Wang P, Wang Y, Peng H, et al. Functional rare variant in a C/EBPbeta binding site in NINJ2 gene increases the risk of coronary artery disease. Aging (Albany NY), 2021, 13(23): 25393-25407.
|
25. |
Yang P, Liu L, Sun L, et al. Immunological feature and transcriptional signaling of Ly6C monocyte subsets from transcriptome analysis in control and hyperhomocysteinemic mice. Front Immunol, 2021, 12: 632333. doi:10.3389/fimmu.2021.632333.
|
26. |
Piazzi M, Bavelloni A, Faenza I, et al. Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. Biochim Biophys Acta Mol Cell Res, 2020, 1867(10): 118769. doi:10.1016/j.bbamcr. 2020. 118769.
|
27. |
Bechara R, Amatya N, Bailey RD, et al. The m6A reader IMP2 directs autoimmune inflammation through an IL-17- and TNFα-dependent C/EBP transcription factor axis. Sci Immunol, 2021, 6(61): eabd1287. doi:10.1126/sciimmunol.abd1287.
|
28. |
Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol, 2014, 26(3): 237-245.
|
29. |
Sass G, Shembade ND, Tiegs G. Tumour necrosis factor alpha (TNF)-TNF receptor 1-inducible cytoprotective proteins in the mouse liver: relevance of suppressors of cytokine signalling. Biochem J, 2005, 385(Pt 2): 537-544.
|
30. |
Zhao W, Bendickson L, Nilsen-Hamilton M. The Lipocalin2 gene is regulated in mammary epithelial cells by NFκB and C/EBP in response to mycoplasma. Sci Rep, 2020, 10(1): 7641. doi:10.1038/s41598-020-63393-x.
|
31. |
Aksentijevich I, Soriano A, Hernández-Rodríguez J. Editorial: autoinflammatory diseases: from genes to bedside. Front Immunol, 2020, 11: 1177. doi:10.3389/fimmu.2020.01177.
|
32. |
Nawab A, An L, Wu J, et al. Chicken toll-like receptors and their significance in immune response and disease resistance. Int Rev Immunol, 2019, 38(6): 284-306.
|
33. |
Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol, 2021, 22(1): 10-18.
|
34. |
Mendes AFM, Gomes CM, Kurizky PS, et al. Case report: a case series of immunobiological therapy (Anti-TNF-α) for patients with erythema nodosum leprosum. Front Med (Lausanne), 2022, 9: 879527. doi: 10.3389/fmed.2022.879527.
|