- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan 430071, P. R. China;
Citation: YE Qifa, WANG Hongyu, LUO Jun, LIU Zhongzhong. Research progress on the role of KLF2 in liver diseases. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(11): 1516-1521. doi: 10.7507/1007-9424.202206008 Copy
1. | McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev, 2010, 90(4): 1337-1381. |
2. | Pearson R, Fleetwood J, Eaton S, et al. Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol, 2008, 40(10): 1996-2001. |
3. | Boon RA, Urbich C, Fischer A, et al. Kruppel-like factor 2 improves neovascularization capacity of aged proangiogenic cells. Eur Heart J, 2011, 32(3): 371-377. |
4. | Chiplunkar AR, Curtis BC, Eades GL, et al. The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis. BMC Dev Biol, 2013, 13: 40. doi: 10.1186/1471-213X-13-40. |
5. | Sangwung P, Zhou G, Nayak L, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight, 2017, 2(4): e91700. doi: 10.1172/jci.insight.91700. |
6. | Thakar S, Katakia YT, Ramakrishnan SK, et al. Intermittent high glucose elevates nuclear localization of EZH2 to cause H3K27me3-dependent repression of KLF2 leading to endothelial inflammation. Cells, 2021, 10(10): 2548. doi: 10.3390/cells10102548. |
7. | Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res, 2005, 96(5): e48-e57. |
8. | Lin Z, Natesan V, Shi H, et al. Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol, 2010, 30(10): 1952-1959. |
9. | Doddaballapur A, Michalik KM, Manavski Y, et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol, 2015, 35(1): 137-145. |
10. | Yang Y, Mumau M, Tober J, et al. Endothelial MEKK3-KLF2/4 signaling integrates inflammatory and hemodynamic signals during definitive hematopoiesis. Blood, 2022, 139(19): 2942-2957. |
11. | Wang FF, Zhang JL, Ji Y, et al. KLF2 mediates the suppressive effect of BDNF on diabetic intimal calcification by inhibiting HK1 induced endothelial-to-mesenchymal transition. Cell Signal, 2022, 94: 110324. doi: 10.1016/j.cellsig.2022.110324. |
12. | Qin SY, Li B, Chen M, et al. MiR-32-5p promoted epithelial-to-mesenchymal transition of oral squamous cell carcinoma cells via regulating the KLF2/CXCR4 pathway. Kaohsiung J Med Sci, 2022, 38(2): 120-128. |
13. | Wittner J, Schuh W. Krüppel-like factor 2 (KLF2) in immune cell migration. Vaccines (Basel), 2021, 9(10): 1171. doi: 10.3390/vaccines9101171. |
14. | Marrone G, Maeso-Díaz R, García-Cardena G, et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut, 2015, 64(9): 1434-1443. |
15. | Chu HR, Sun YC, Gao Y, et al. Function of Krüppel-like factor 2 in the shear stress-induced cell differentiation of endothelial progenitor cells to endothelial cells. Mol Med Rep, 2019, 19(3): 1739-1746. |
16. | Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood, 2002, 100(5): 1689-1698. |
17. | Sathanoori R, Rosi F, Gu BJ, et al. Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal, 2015, 11(1): 139-153. |
18. | Russo FP, Ferrarese A, Zanetto A. Recent advances in understanding and managing liver transplantation. F1000Res, 2016, 5: F1000 Faculty Rev-2895.1000v-2895v. doi: 10.12688/f1000research.8768.1.eCollection 2016. |
19. | Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol, 2021, 160: 103227. doi: 10.1016/j.critrevonc.2021.103227. |
20. | Czigany Z, Lurje I, Schmelzle M, et al. Ischemia-reperfusion injury in marginal liver grafts and the role of hypothermic machine perfusion: molecular mechanisms and clinical implications. J Clin Med, 2020, 9(3): 846. doi: 10.3390/jcm9030846. |
21. | Ye L, He S, Mao X, et al. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation. Front Immunol, 2020, 11: 1193. doi:10.3389/fimmu.2020.01193. |
22. | Lentsch AB, Kato A, Yoshidome H, et al. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology, 2000, 32(2): 169-173. |
23. | Guan Y, Yao W, Yi K, et al. Nanotheranostics for the management of hepatic ischemia-reperfusion injury. Small, 2021, 17(23): e2007727. doi: 10.1002/smll.202007727. |
24. | Wu W, Geng P, Zhu J, et al. KLF2 regulates eNOS uncoupling via Nrf2/HO-1 in endothelial cells under hypoxia and reoxygenation. Chem Biol Interact, 2019, 305: 105-111. |
25. | Chatauret N, Coudroy R, Delpech PO, et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion’s protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am J Transplant, 2014, 14(11): 2500-2514. |
26. | Hide D, Ortega-Ribera M, Garcia-Pagan JC, et al. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy. Sci Rep, 2016, 6: 22107. doi: 10.1038/srep22107. |
27. | Nemeth N, Peto K, Magyar Z, et al. Hemorheological and microcirculatory factors in liver ischemia-reperfusion injury-an update on pathophysiology, molecular mechanisms and protective strategies. Int J Mol Sci, 2021, 22(4): 1864. doi: 10.3390/ijms22041864. |
28. | Wu F, Li C. KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage. Cell Death Discov, 2022, 8(1): 41. doi: 10.1038/s41420-022-00813-z. |
29. | Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol, 2013, 59(5): 1094-1106. |
30. | Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, et al. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 411-431. |
31. | Wuestenberg A, Kah J, Singethan K, et al. Matrix conditions and KLF2-dependent induction of heme oxygenase-1 modulate inhibition of HCV replication by fluvastatin. PLoS One, 2014, 9(5): e96533. doi: 10.1371/journal.pone.0096533. |
32. | Otterbein LE, Soares MP, Yamashita K, et al. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol, 2003, 24(8): 449-455. |
33. | Selzner N, Rudiger H, Graf R, et al. Protective strategies against ischemic injury of the liver. Gastroenterology, 2003, 125(3): 917-936. |
34. | Qu S, Yuan B, Zhang H, et al. Heme oxygenase 1 attenuates hypoxia-reoxygenation injury in mice liver sinusoidal endothelial cells. Transplantation, 2018, 102(3): 426-432. |
35. | Boteon YL, Laing R, Mergental H, et al. Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol, 2017, 23(48): 8443-8451. |
36. | Ruart M, Chavarria L, Campreciós G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol, 2019, 70(3): 458-469. |
37. | Laha D, Deb M, Das H. KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy. Autophagy, 2019, 15(12): 2063-2075. |
38. | Maity J, Deb M, Greene C, et al. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biol, 2020, 36: 101622. doi: 10.1016/j.redox.2020.101622. |
39. | Ma C, Wu H, Yang G, et al. Calycosin ameliorates atherosclerosis by enhancing autophagy via regulating the interaction between KLF2 and MLKL in apolipoprotein E gene-deleted mice. Br J Pharmacol, 2022, 179(2): 252-269. |
40. | Yu Z, Guo J, Liu Y, et al. Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. J Nanobiotechnology, 2022, 20(1): 9. doi: 10.1186/s12951-021-01205-8. |
41. | Guixé-Muntet S, de Mesquita FC, Vila S, et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol, 2017, 66(1): 86-94. |
42. | Liu Z, Zhang X, Xiao Q, et al. Pretreatment donors after circulatory death with simvastatin alleviates liver ischemia reperfusion injury through a KLF2-dependent mechanism in rat. Oxid Med Cell Longev, 2017, 2017: 3861914. doi: doi: 10.1155/2017/3861914. |
43. | Liu Z, Zhong Z, Lan J, et al. Mechanisms of hypothermic machine perfusion to decrease donation after cardiac death graft inflammation: Through the pathway of upregulating expression of KLF2 and inhibiting TGF-β signaling. Artif Organs, 2017, 41(1): 82-88. |
44. | Zhao X, Jin Y, Li L, et al. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol Res, 2019, 146: 104276. doi: 10.1016/j.phrs.2019.104276. |
45. | Mou T, Luo Y, Huang Z, et al. Inhibition of microRNA-128-3p alleviates liver ischaemia-reperfusion injury in mice through repressing the Rnd3/NF- κB axis. Innate Immun, 2020, 26(6): 528-536. |
46. | Lu Q, Meng Q, Qi M, et al. Shear-Sensitive lncRNA AF1312171 inhibits inflammation in HUVECs via regulation of KLF4. Hypertension, 2019, 73(5): e25-e34. |
47. | Kim CK, He P, Bialkowska AB, et al. SP and KLF transcription factors in digestive physiology and diseases. Gastroenterology, 2017, 152(8): 1845-1875. |
48. | Ray K. Liver: Sussing out statins in cirrhosis—KLF2 is the key. Nat Rev Gastroenterol Hepatol, 2015, 12(2): 64. doi: 10.1038/nrgastro.2014.233. |
49. | Gracia-Sancho J, Russo L, García-Calderó H, et al. Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut, 2011, 60(4): 517-524. |
50. | Marrone G, Russo L, Rosado E, et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins. J Hepatol, 2013, 58(1): 98-103. |
51. | Zeng XQ, Li N, Pan DY, et al. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway. Biochem Biophys Res Commun, 2015, 464(4): 1241-1247. |
52. | Kobus K, Kopycinska J, Kozlowska-Wiechowska A, et al. Angiogenesis within the duodenum of patients with cirrhosis is modulated by mechanosensitive Kruppel-like factor 2 and microRNA-126. Liver Int, 2012, 32(8): 1222-1232. |
53. | Engelmann C, Clària J, Szabo G, et al. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J Hepatol, 2021, 75 Suppl 1(Suppl 1): S49-S66. |
54. | Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. |
55. | Pennisi G, Celsa C, Spatola F, et al. Pharmacological therapy of non-alcoholic fatty liver disease: What drugs are available now and future perspectives. Int J Environ Res Public Health, 2019, 16(22): 4334. doi: 10.3390/ijerph16224334. |
56. | Banerjee SS, Feinberg MW, Watanabe M, et al. The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem, 2003, 278(4): 2581-2584. |
57. | Chen JL, Lu XJ, Zou KL, et al. Krüppel-like factor 2 promotes liver steatosis through upregulation of CD36. J Lipid Res, 2014, 55(1): 32-40. |
58. | Ale-Ebrahim M, Rahmani R, Faryabi K, et al. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-Ⅱ, and PDGF mRNA expression in NMRI mice fed HCD. Mol Biol Rep, 2022, 49(5): 3433-3443. |
59. | Jiang W, Xu X, Deng S, et al. Methylation of kruppel-like factor 2 (KLF2) associates with its expression and non-small cell lung cancer progression. Am J Transl Res, 2017, 9(4): 2024-2037. |
60. | Lin J, Tan H, Nie Y, et al. Krüppel-like factor 2 inhibits hepatocarcinogenesis through negative regulation of the Hedgehog pathway. Cancer Sci, 2019, 110(4): 1220-1231. |
61. | Zou K, Lu X, Ye K, et al. Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol Ther, 2016, 17(1): 20-26. |
62. | Li Y, Tu S, Zeng Y, et al. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai), 2020, 52(5): 485-494. |
63. | Manavski Y, Abel T, Hu J, et al. Endothelial transcription factor KLF2 negatively regulates liver regeneration via induction of activin A. Proc Natl Acad Sci U S A, 2017, 114(15): 3993-3998. |
64. | Jin L, He Y, Tang S, et al. LncRNA GHET1 predicts poor prognosis in hepatocellular carcinoma and promotes cell proliferation by silencing KLF2. J Cell Physiol, 2018, 233(6): 4726-4734. |
65. | Wang J, Loveless I, Adrianto I, et al. Single-cell analysis reveals differences among iNKT cells colonizing peripheral organs and identifies Klf2 as a key gene for iNKT emigration. Cell Discov, 2022, 8(1): 75. doi: 10.1038/s41421-022-00432-z. |
66. | Taraban VY, Martin S, Attfield KE, et al. Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J Immunol, 2008, 180(7): 4615-4620. |
67. | Qi X, Wu F, Kim SH, et al. Nanoliposome C6-Ceramide in combination with anti-CTLA4 antibody improves anti-tumor immunity in hepatocellular cancer. FASEB J, 2022, 36(4): e22250. doi: 10.1096/fj.202101707R. |
68. | Liu T, Tan J, Wu M, et al. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+ CD8+ T cells. Gut, 2021, 70(10): 1965-1977. |
69. | Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer, 2015, 14: 165. doi: 10.1186/s12943-015-0431-0. |
70. | Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2. J Hematol Oncol, 2015, 8: 50. doi: 10.1186/s13045-015-0153-1. |
71. | Choi Y, Oh ST, Won MA, et al. Targeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma. Biochem Biophys Res Commun, 2016, 478(4): 1674-1681. |
72. | Niedzielski M, Broncel M, Gorzelak-Pabiś P, et al. New possible pharmacological targets for statins and ezetimibe. Biomed Pharmacother, 2020, 129: 110388. |
73. | Wei T, Li J, Fu G, et al. Simvastatin improves myocardial ischemia reperfusion injury through KLF-regulated alleviation of inflammation. Dis Markers, 2022, 2022: 7878602. doi: 10.1155/2022/7878602. |
74. | Russo L, Gracia-Sancho J, García-Calderó H, et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology, 2012, 55(3): 921-930. |
75. | Bader T, Fazili J, Madhoun M, et al. Fluvastatin inhibits hepatitis C replication in humans. Am J Gastroenterol, 2008, 103(6): 1383-1389. |
76. | Tseng CK, Hsu SP, Lin CK, et al. Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antiviral Res, 2017, 146: 191-200. |
77. | Sirtori CR. The pharmacology of statins. Pharmacol Res, 2014, 88: 3-11. |
78. | Akbari-Kordkheyli V, Azizi S, Khonakdar-Tarsi A. Effects of silibinin on hepatic warm ischemia-reperfusion injury in the rat model. Iran J Basic Med Sci, 2019, 22(7): 789-796. |
79. | Wu CH, Chiu YL, Hsieh CY, et al. Cilostazol induces eNOS and TM expression via activation with Sirtuin 1/Krüppel-like factor 2 pathway in endothelial cells. Int J Mol Sci, 2021, 22(19): 10287. doi: 10.3390/ijms221910287. |
- 1. McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev, 2010, 90(4): 1337-1381.
- 2. Pearson R, Fleetwood J, Eaton S, et al. Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol, 2008, 40(10): 1996-2001.
- 3. Boon RA, Urbich C, Fischer A, et al. Kruppel-like factor 2 improves neovascularization capacity of aged proangiogenic cells. Eur Heart J, 2011, 32(3): 371-377.
- 4. Chiplunkar AR, Curtis BC, Eades GL, et al. The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis. BMC Dev Biol, 2013, 13: 40. doi: 10.1186/1471-213X-13-40.
- 5. Sangwung P, Zhou G, Nayak L, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight, 2017, 2(4): e91700. doi: 10.1172/jci.insight.91700.
- 6. Thakar S, Katakia YT, Ramakrishnan SK, et al. Intermittent high glucose elevates nuclear localization of EZH2 to cause H3K27me3-dependent repression of KLF2 leading to endothelial inflammation. Cells, 2021, 10(10): 2548. doi: 10.3390/cells10102548.
- 7. Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res, 2005, 96(5): e48-e57.
- 8. Lin Z, Natesan V, Shi H, et al. Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol, 2010, 30(10): 1952-1959.
- 9. Doddaballapur A, Michalik KM, Manavski Y, et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol, 2015, 35(1): 137-145.
- 10. Yang Y, Mumau M, Tober J, et al. Endothelial MEKK3-KLF2/4 signaling integrates inflammatory and hemodynamic signals during definitive hematopoiesis. Blood, 2022, 139(19): 2942-2957.
- 11. Wang FF, Zhang JL, Ji Y, et al. KLF2 mediates the suppressive effect of BDNF on diabetic intimal calcification by inhibiting HK1 induced endothelial-to-mesenchymal transition. Cell Signal, 2022, 94: 110324. doi: 10.1016/j.cellsig.2022.110324.
- 12. Qin SY, Li B, Chen M, et al. MiR-32-5p promoted epithelial-to-mesenchymal transition of oral squamous cell carcinoma cells via regulating the KLF2/CXCR4 pathway. Kaohsiung J Med Sci, 2022, 38(2): 120-128.
- 13. Wittner J, Schuh W. Krüppel-like factor 2 (KLF2) in immune cell migration. Vaccines (Basel), 2021, 9(10): 1171. doi: 10.3390/vaccines9101171.
- 14. Marrone G, Maeso-Díaz R, García-Cardena G, et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut, 2015, 64(9): 1434-1443.
- 15. Chu HR, Sun YC, Gao Y, et al. Function of Krüppel-like factor 2 in the shear stress-induced cell differentiation of endothelial progenitor cells to endothelial cells. Mol Med Rep, 2019, 19(3): 1739-1746.
- 16. Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood, 2002, 100(5): 1689-1698.
- 17. Sathanoori R, Rosi F, Gu BJ, et al. Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal, 2015, 11(1): 139-153.
- 18. Russo FP, Ferrarese A, Zanetto A. Recent advances in understanding and managing liver transplantation. F1000Res, 2016, 5: F1000 Faculty Rev-2895.1000v-2895v. doi: 10.12688/f1000research.8768.1.eCollection 2016.
- 19. Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol, 2021, 160: 103227. doi: 10.1016/j.critrevonc.2021.103227.
- 20. Czigany Z, Lurje I, Schmelzle M, et al. Ischemia-reperfusion injury in marginal liver grafts and the role of hypothermic machine perfusion: molecular mechanisms and clinical implications. J Clin Med, 2020, 9(3): 846. doi: 10.3390/jcm9030846.
- 21. Ye L, He S, Mao X, et al. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation. Front Immunol, 2020, 11: 1193. doi:10.3389/fimmu.2020.01193.
- 22. Lentsch AB, Kato A, Yoshidome H, et al. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology, 2000, 32(2): 169-173.
- 23. Guan Y, Yao W, Yi K, et al. Nanotheranostics for the management of hepatic ischemia-reperfusion injury. Small, 2021, 17(23): e2007727. doi: 10.1002/smll.202007727.
- 24. Wu W, Geng P, Zhu J, et al. KLF2 regulates eNOS uncoupling via Nrf2/HO-1 in endothelial cells under hypoxia and reoxygenation. Chem Biol Interact, 2019, 305: 105-111.
- 25. Chatauret N, Coudroy R, Delpech PO, et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion’s protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am J Transplant, 2014, 14(11): 2500-2514.
- 26. Hide D, Ortega-Ribera M, Garcia-Pagan JC, et al. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy. Sci Rep, 2016, 6: 22107. doi: 10.1038/srep22107.
- 27. Nemeth N, Peto K, Magyar Z, et al. Hemorheological and microcirculatory factors in liver ischemia-reperfusion injury-an update on pathophysiology, molecular mechanisms and protective strategies. Int J Mol Sci, 2021, 22(4): 1864. doi: 10.3390/ijms22041864.
- 28. Wu F, Li C. KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage. Cell Death Discov, 2022, 8(1): 41. doi: 10.1038/s41420-022-00813-z.
- 29. Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol, 2013, 59(5): 1094-1106.
- 30. Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, et al. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 411-431.
- 31. Wuestenberg A, Kah J, Singethan K, et al. Matrix conditions and KLF2-dependent induction of heme oxygenase-1 modulate inhibition of HCV replication by fluvastatin. PLoS One, 2014, 9(5): e96533. doi: 10.1371/journal.pone.0096533.
- 32. Otterbein LE, Soares MP, Yamashita K, et al. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol, 2003, 24(8): 449-455.
- 33. Selzner N, Rudiger H, Graf R, et al. Protective strategies against ischemic injury of the liver. Gastroenterology, 2003, 125(3): 917-936.
- 34. Qu S, Yuan B, Zhang H, et al. Heme oxygenase 1 attenuates hypoxia-reoxygenation injury in mice liver sinusoidal endothelial cells. Transplantation, 2018, 102(3): 426-432.
- 35. Boteon YL, Laing R, Mergental H, et al. Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol, 2017, 23(48): 8443-8451.
- 36. Ruart M, Chavarria L, Campreciós G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol, 2019, 70(3): 458-469.
- 37. Laha D, Deb M, Das H. KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy. Autophagy, 2019, 15(12): 2063-2075.
- 38. Maity J, Deb M, Greene C, et al. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biol, 2020, 36: 101622. doi: 10.1016/j.redox.2020.101622.
- 39. Ma C, Wu H, Yang G, et al. Calycosin ameliorates atherosclerosis by enhancing autophagy via regulating the interaction between KLF2 and MLKL in apolipoprotein E gene-deleted mice. Br J Pharmacol, 2022, 179(2): 252-269.
- 40. Yu Z, Guo J, Liu Y, et al. Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. J Nanobiotechnology, 2022, 20(1): 9. doi: 10.1186/s12951-021-01205-8.
- 41. Guixé-Muntet S, de Mesquita FC, Vila S, et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol, 2017, 66(1): 86-94.
- 42. Liu Z, Zhang X, Xiao Q, et al. Pretreatment donors after circulatory death with simvastatin alleviates liver ischemia reperfusion injury through a KLF2-dependent mechanism in rat. Oxid Med Cell Longev, 2017, 2017: 3861914. doi: doi: 10.1155/2017/3861914.
- 43. Liu Z, Zhong Z, Lan J, et al. Mechanisms of hypothermic machine perfusion to decrease donation after cardiac death graft inflammation: Through the pathway of upregulating expression of KLF2 and inhibiting TGF-β signaling. Artif Organs, 2017, 41(1): 82-88.
- 44. Zhao X, Jin Y, Li L, et al. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol Res, 2019, 146: 104276. doi: 10.1016/j.phrs.2019.104276.
- 45. Mou T, Luo Y, Huang Z, et al. Inhibition of microRNA-128-3p alleviates liver ischaemia-reperfusion injury in mice through repressing the Rnd3/NF- κB axis. Innate Immun, 2020, 26(6): 528-536.
- 46. Lu Q, Meng Q, Qi M, et al. Shear-Sensitive lncRNA AF1312171 inhibits inflammation in HUVECs via regulation of KLF4. Hypertension, 2019, 73(5): e25-e34.
- 47. Kim CK, He P, Bialkowska AB, et al. SP and KLF transcription factors in digestive physiology and diseases. Gastroenterology, 2017, 152(8): 1845-1875.
- 48. Ray K. Liver: Sussing out statins in cirrhosis—KLF2 is the key. Nat Rev Gastroenterol Hepatol, 2015, 12(2): 64. doi: 10.1038/nrgastro.2014.233.
- 49. Gracia-Sancho J, Russo L, García-Calderó H, et al. Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut, 2011, 60(4): 517-524.
- 50. Marrone G, Russo L, Rosado E, et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins. J Hepatol, 2013, 58(1): 98-103.
- 51. Zeng XQ, Li N, Pan DY, et al. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway. Biochem Biophys Res Commun, 2015, 464(4): 1241-1247.
- 52. Kobus K, Kopycinska J, Kozlowska-Wiechowska A, et al. Angiogenesis within the duodenum of patients with cirrhosis is modulated by mechanosensitive Kruppel-like factor 2 and microRNA-126. Liver Int, 2012, 32(8): 1222-1232.
- 53. Engelmann C, Clària J, Szabo G, et al. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J Hepatol, 2021, 75 Suppl 1(Suppl 1): S49-S66.
- 54. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20.
- 55. Pennisi G, Celsa C, Spatola F, et al. Pharmacological therapy of non-alcoholic fatty liver disease: What drugs are available now and future perspectives. Int J Environ Res Public Health, 2019, 16(22): 4334. doi: 10.3390/ijerph16224334.
- 56. Banerjee SS, Feinberg MW, Watanabe M, et al. The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem, 2003, 278(4): 2581-2584.
- 57. Chen JL, Lu XJ, Zou KL, et al. Krüppel-like factor 2 promotes liver steatosis through upregulation of CD36. J Lipid Res, 2014, 55(1): 32-40.
- 58. Ale-Ebrahim M, Rahmani R, Faryabi K, et al. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-Ⅱ, and PDGF mRNA expression in NMRI mice fed HCD. Mol Biol Rep, 2022, 49(5): 3433-3443.
- 59. Jiang W, Xu X, Deng S, et al. Methylation of kruppel-like factor 2 (KLF2) associates with its expression and non-small cell lung cancer progression. Am J Transl Res, 2017, 9(4): 2024-2037.
- 60. Lin J, Tan H, Nie Y, et al. Krüppel-like factor 2 inhibits hepatocarcinogenesis through negative regulation of the Hedgehog pathway. Cancer Sci, 2019, 110(4): 1220-1231.
- 61. Zou K, Lu X, Ye K, et al. Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol Ther, 2016, 17(1): 20-26.
- 62. Li Y, Tu S, Zeng Y, et al. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai), 2020, 52(5): 485-494.
- 63. Manavski Y, Abel T, Hu J, et al. Endothelial transcription factor KLF2 negatively regulates liver regeneration via induction of activin A. Proc Natl Acad Sci U S A, 2017, 114(15): 3993-3998.
- 64. Jin L, He Y, Tang S, et al. LncRNA GHET1 predicts poor prognosis in hepatocellular carcinoma and promotes cell proliferation by silencing KLF2. J Cell Physiol, 2018, 233(6): 4726-4734.
- 65. Wang J, Loveless I, Adrianto I, et al. Single-cell analysis reveals differences among iNKT cells colonizing peripheral organs and identifies Klf2 as a key gene for iNKT emigration. Cell Discov, 2022, 8(1): 75. doi: 10.1038/s41421-022-00432-z.
- 66. Taraban VY, Martin S, Attfield KE, et al. Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J Immunol, 2008, 180(7): 4615-4620.
- 67. Qi X, Wu F, Kim SH, et al. Nanoliposome C6-Ceramide in combination with anti-CTLA4 antibody improves anti-tumor immunity in hepatocellular cancer. FASEB J, 2022, 36(4): e22250. doi: 10.1096/fj.202101707R.
- 68. Liu T, Tan J, Wu M, et al. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+ CD8+ T cells. Gut, 2021, 70(10): 1965-1977.
- 69. Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer, 2015, 14: 165. doi: 10.1186/s12943-015-0431-0.
- 70. Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2. J Hematol Oncol, 2015, 8: 50. doi: 10.1186/s13045-015-0153-1.
- 71. Choi Y, Oh ST, Won MA, et al. Targeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma. Biochem Biophys Res Commun, 2016, 478(4): 1674-1681.
- 72. Niedzielski M, Broncel M, Gorzelak-Pabiś P, et al. New possible pharmacological targets for statins and ezetimibe. Biomed Pharmacother, 2020, 129: 110388.
- 73. Wei T, Li J, Fu G, et al. Simvastatin improves myocardial ischemia reperfusion injury through KLF-regulated alleviation of inflammation. Dis Markers, 2022, 2022: 7878602. doi: 10.1155/2022/7878602.
- 74. Russo L, Gracia-Sancho J, García-Calderó H, et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology, 2012, 55(3): 921-930.
- 75. Bader T, Fazili J, Madhoun M, et al. Fluvastatin inhibits hepatitis C replication in humans. Am J Gastroenterol, 2008, 103(6): 1383-1389.
- 76. Tseng CK, Hsu SP, Lin CK, et al. Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antiviral Res, 2017, 146: 191-200.
- 77. Sirtori CR. The pharmacology of statins. Pharmacol Res, 2014, 88: 3-11.
- 78. Akbari-Kordkheyli V, Azizi S, Khonakdar-Tarsi A. Effects of silibinin on hepatic warm ischemia-reperfusion injury in the rat model. Iran J Basic Med Sci, 2019, 22(7): 789-796.
- 79. Wu CH, Chiu YL, Hsieh CY, et al. Cilostazol induces eNOS and TM expression via activation with Sirtuin 1/Krüppel-like factor 2 pathway in endothelial cells. Int J Mol Sci, 2021, 22(19): 10287. doi: 10.3390/ijms221910287.
-
Previous Article
胰腺颈部Castleman病1例报道 -
Next Article
Development in immunotherapy of lung cancer