1. |
Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg, 1973, 60(8): 646-649.
|
2. |
Malinchoc M, Kamath PS, Gordon FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology, 2000, 31(4): 864-871.
|
3. |
Cucchetti A, Ercolani G, Vivarelli M, et al. Impact of model for end-stage liver disease (MELD) score on prognosis after hepatectomy for hepatocellular carcinoma on cirrhosis. Liver Transpl, 2006, 12(6): 966-971.
|
4. |
Reddy SS, Civan JM. From Child-Pugh to Model for End-Stage Liver Disease: deciding who needs a liver transplant. Med Clin North Am, 2016, 100(3): 449-464.
|
5. |
Biggins SW, Kim WR, Terrault NA, et al. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology, 2006, 130(6): 1652-1660.
|
6. |
Cholankeril G, Li AA, Dennis BB, et al. Pre-operative delta-MELD is an independent predictor of higher mortality following liver transplantation. Sci Rep, 2019, 9(1): 8312. doi: 10.1038/s41598-019-44814-y.
|
7. |
Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol, 2015, 33(6): 550-558.
|
8. |
Starlinger P, Ubl DS, Hackl H, et al. Combined APRI/ALBI score to predict mortality after hepatic resection. BJS Open, 2021, 5(1): zraa043. doi: 10.1093/bjsopen/zraa043.
|
9. |
Hiraoka A, Kumada T, Michitaka K, et al. Newly proposed ALBI grade and ALBI-T score as tools for assessment of hepatic function and prognosis in hepatocellular carcinoma patients. Liver Cancer, 2019, 8(5): 312-325.
|
10. |
Kariyama K, Nouso K, Hiraoka A, et al. EZ-ALBI score for predicting hepatocellular carcinoma prognosis. Liver Cancer, 2020, 9(6): 734-743.
|
11. |
Wang YY, Zhong JH, Su ZY, et al. Albumin-bilirubin versus Child-Pugh score as a predictor of outcome after liver resection for hepatocellular carcinoma. Br J Surg, 2016, 103(6): 725-734.
|
12. |
Zou H, Yang X, Li QL, et al. A comparative study of albumin-bilirubin score with Child-Pugh score, model for end-stage liver disease score and indocyanine green R15 in predicting posthepatectomy liver failure for hepatocellular carcinoma patients. Dig Dis, 2018, 36(3): 236-243.
|
13. |
Wang YY, Zhao XH, Ma L, et al. Comparison of the ability of Child-Pugh score, MELD score, and ICG-R15 to assess preoperative hepatic functional reserve in patients with hepatocellular carcinoma. J Surg Oncol, 2018, 118(3): 440-445.
|
14. |
Zhang ZQ, Xiong L, Zhou JJ, et al. Ability of the ALBI grade to predict posthepatectomy liver failure and long-term survival after liver resection for different BCLC stages of HCC. World J Surg Oncol, 2018, 16(1): 208. doi: 10.1186/s12957-018-1500-9.
|
15. |
Fagenson AM, Gleeson EM, Pitt HA, et al. Albumin-Bilirubin score vs model for end-stage liver disease in predicting post-hepatectomy outcomes. J Am Coll Surg, 2020, 230(4): 637-645.
|
16. |
Anger F, Klein I, Löb S, et al. Preoperative liver function guiding HCC resection in normal and cirrhotic liver. Visc Med, 2021, 37(2): 94-101.
|
17. |
Fu R, Qiu T, Ling W, et al. Comparison of preoperative two-dimensional shear wave elastography, indocyanine green clearance test and biomarkers for post hepatectomy liver failure prediction in patients with hepatocellular carcinoma. BMC Gastroenterol, 2021, 21(1): 142. doi: 10.1186/s12876-021-01727-3.
|
18. |
Wen X, Yao M, Lu Y, et al. Integration of prealbumin into Child-Pugh classification improves prognosis predicting accuracy in HCC patients considering curative surgery. J Clin Transl Hepatol, 2018, 6(4): 377-384.
|
19. |
Ingenbleek Y. Plasma transthyretin as a biomarker of sarcopenia in elderly subjects. Nutrients, 2019, 11(4): 895. doi: 10.3390/nu11040895.
|
20. |
Makuuchi M, Kosuge T, Takayama T, et al. Surgery for small liver cancers. Semin Surg Oncol, 1993, 9(4): 298-304.
|
21. |
Köller A, Grzegorzewski J, König M. Physiologically based modeling of the effect of physiological and anthropometric variability on indocyanine green based liver function tests. Front Physiol, 2021, 12: 757293. doi: 10.3389/fphys.2021.757293.
|
22. |
Paumgartner G, Huber J, Grabner G. Kinetics of hepatic dye absorption for indocyanine green. Influence of bilirubin and sodium glycocholate. Experientia, 1969, 25(11): 1219-1223.
|
23. |
Liu W, Chen LJ, Jiang Y, et al. Hepatocellular carcinoma with indocyanine green excretory defect: a case report and review of the literature. J Int Med Res, 2021, 49(4): 3000605211004025. doi: 10.1177/03000605211004025.
|
24. |
Kokudo T, Hasegawa K, Amikura K, et al. Assessment of preoperative liver function in patients with hepatocellular carcinoma—the albumin-indocyanine green evaluation (ALICE) grade. PLoS One, 2016, 11(7): e0159530. doi: 10.1371/journal.pone.0159530.
|
25. |
Stockmann M, Lock JF, Riecke B, et al. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg, 2009, 250(1): 119-125.
|
26. |
Gorowska-Kowolik K, Chobot A, Kwiecien J. 13C methacetin breath test for assessment of microsomal liver function: methodology and clinical application. Gastroenterol Res Pract, 2017, 2017: 7397840. doi: 10.1155/2017/7397840.
|
27. |
Dziodzio T, Öllinger R, Schöning W, et al. Validation of a new prognostic model to predict short and medium-term survival in patients with liver cirrhosis. BMC Gastroenterol, 2020, 20(1): 265. doi: 10.1186/s12876-020-01407-8.
|
28. |
Jara M, Dziodzio T, Malinowski M, et al. Prospective assessment of liver function by an enzymatic liver function test to estimate short-term survival in patients with liver cirrhosis. Dig Dis Sci, 2019, 64(2): 576-584.
|
29. |
de Graaf W, Häusler S, Heger M, et al. Transporters involved in the hepatic uptake of 99mTc-mebrofenin and indocyanine green. J Hepatol, 2011, 54(4): 738-745.
|
30. |
Heyman S. Hepatobiliary scintigraphy as a liver function test. J Nucl Med, 1994, 35(3): 436-437.
|
31. |
Hoekstra LT, de Graaf W, Nibourg GA, et al. Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg, 2013, 257(1): 27-36.
|
32. |
Olthof PB, Coelen RJS, Bennink RJ, et al. 99mTc-mebrofenin hepatobiliary scintigraphy predicts liver failure following major liver resection for perihilar cholangiocarcinoma. HPB (Oxford), 2017, 19(10): 850-858.
|
33. |
Iimuro Y, Kashiwagi T, Yamanaka J, et al. Preoperative estimation of asialoglycoprotein receptor expression in the remnant liver from CT/99mTc-GSA SPECT fusion images correlates well with postoperative liver function parameters. J Hepatobiliary Pancreat Sci, 2010, 17(5): 673-681.
|
34. |
Noji T, Inoue A, Nakanishi Y, et al. 99mTc-GSA scintigraphy could predict post-hepatectomy liver failure-related death in biliary surgery. J Gastrointest Surg, 2021, 25(12): 3236-3238.
|
35. |
Tomita K, Chiba N, Ochiai S, et al. Prognostic value of future liver remnant LU15 index of 99mTc-galactosyl serum albumin scintigraphy for predicting posthepatectomy liver failure. PLoS One, 2021, 16(2): e0247675. doi: 10.1371/journal.pone.0247675.
|
36. |
王荣福, 庞小溪, 刘敏, 等. 99mTc-GSA肝受体显像在肝功能评估临床研究应用及进展. 世界华人消化杂志, 2017, 25(21): 1903-1909.
|
37. |
Gennisson JL, Deffieux T, Fink M, et al. Ultrasound elastography: principles and techniques. Diagn Interv Imaging, 2013, 94(5): 487-495.
|
38. |
Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (Long version). Ultraschall Med, 2017, 38(4): e16-e47. doi: 10.1055/s-0043-103952.
|
39. |
Shen Y, Zhou C, Zhu G, et al. Liver stiffness assessed by shear wave elastography predicts postoperative liver failure in patients with hepatocellular carcinoma. J Gastrointest Surg, 2017, 21(9): 1471-1479.
|
40. |
Rajakannu M, Cherqui D, Ciacio O, et al. Liver stiffness measurement by transient elastography predicts late posthepatectomy outcomes in patients undergoing resection for hepatocellular carcinoma. Surgery, 2017, 162(4): 766-774.
|
41. |
Ferraioli G, Filice C, Castera L, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol, 2015, 41(5): 1161-1179.
|
42. |
Tang A, Cloutier G, Szeverenyi NM, et al. Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 1, principles and techniques. AJR Am J Roentgenol, 2015, 205(1): 22-32.
|
43. |
Long H, Xu W, Zhong X, et al. Feasibility of liver stiffness measured using two-dimensional shear wave elastography in assessing preoperative liver function for patients with hepatocellular carcinoma. Abdom Radiol (NY), 2022, 47(2): 664-671.
|
44. |
Luo N, Huang X, Ji Y, et al. A functional liver imaging score for preoperative prediction of liver failure after hepatocellular carcinoma resection. Eur Radiol, 2022, 32(8): 5623-5632.
|
45. |
Park HJ, Yoon JS, Lee SS, et al. Deep learning-based assessment of functional liver capacity using gadoxetic acid-enhanced hepatobiliary phase MRI. Korean J Radiol, 2022, 23(7): 720-731.
|
46. |
Mise Y, Hasegawa K, Satou S, et al. How has virtual hepatectomy changed the practice of liver surgery?: experience of 1 194 virtual hepatectomy before liver resection and living donor liver transplantation. Ann Surg, 2018, 268(1): 127-133.
|
47. |
Orimo T, Kamiyama T, Kamachi H, et al. Predictive value of gadoxetic acid enhanced magnetic resonance imaging for posthepatectomy liver failure after a major hepatectomy. J Hepatobiliary Pancreat Sci, 2020, 27(8): 531-540.
|
48. |
Lefebvre T, Wartelle-Bladou C, Wong P, et al. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis. Eur Radiol, 2019, 29(12): 6477-6488.
|
49. |
Huang M, Shen S, Cai H, et al. Regional liver function analysis with gadoxetic acid-enhanced MRI and virtual hepatectomy: prediction of postoperative short-term outcomes for HCC. Eur Radiol, 2021, 31(7): 4720-4730.
|
50. |
Bertens KA, Hawel J, Lung K, et al. ALPPS: challenging the concept of unresectability—a systematic review. Int J Surg, 2015, 13: 280-287.
|