1. |
Yılmaz B, Gezmen Karadağ M. The current review of adolescent obesity: the role of genetic factors. J Pediatr Endocrinol Metab, 2020, 34(2): 151-162.
|
2. |
Ayuningtyas D, Kusuma D, Amir V, et al. Disparities in obesity rates among adults: analysis of 514 districts in indonesia. Nutrients, 2022, 14(16): 3332. doi: 10.3390/nu14163332.
|
3. |
El-Sayed Moustafa JS, Froguel P. From obesity genetics to the future of personalized obesity therapy. Nat Rev Endocrinol, 2013, 9(7): 402-413.
|
4. |
Aron-Wisnewsky J, Doré J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol, 2012, 9(10): 590-598.
|
5. |
杨华, 陈缘, 董志勇, 等. 中国肥胖代谢外科数据库: 2020年度报告. 中华肥胖与代谢病电子杂志, 2021, 7(1): 1-7.
|
6. |
Valentí V, Cienfuegos JA, Becerril Mañas S, et al. Mechanism of bariatric and metabolic surgery: beyond surgeons, gastroenterologists and endocrinologists. Rev Esp Enferm Dig, 2020, 112(3): 229-233.
|
7. |
Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723.
|
8. |
Debédat J, Clément K, Aron-Wisnewsky J. Gut microbiota dysbiosis in human obesity: impact of bariatric surgery. Curr Obes Rep, 2019, 8(3): 229-242.
|
9. |
Pascale A, Marchesi N, Marelli C, et al. Microbiota and metabolic diseases. Endocrine, 2018, 61(3): 357-371.
|
10. |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65.
|
11. |
Lager CJ, Esfandiari NH, Subauste AR, et al. Roux-En-Y gastric bypass vs. sleeve gastrectomy:balancing the risks of surgery with the benefits of weight loss. Obes Surg, 2017, 27(1): 154-161.
|
12. |
Cӑtoi AF, Vodnar DC, Corina A, et al. Gut microbiota, obesity and bariatric surgery: current knowledge and future perspectives. Curr Pharm Des, 2019, 25(18): 2038-2050.
|
13. |
Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A, 2009, 106(7): 2365-2370.
|
14. |
Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med, 2016, 8(1): 67. doi: 10.1186/s13073-016-0312-1.
|
15. |
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 2013, 110(22): 9066-9071.
|
16. |
Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65(3): 426-436.
|
17. |
郭妍. 减重手术对肥胖糖尿病大鼠肠道菌群结构多样性的影响. 第二军医大学, 2014.
|
18. |
Medina DA, Pedreros JP, Turiel D, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ, 2017, 5: e3443. doi: 10.7717/peerj.3443.
|
19. |
Murphy R, Tsai P, Jüllig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg, 2017, 27(4): 917-925.
|
20. |
陈国林. LSG和LRYGB对肥胖症患者肠道菌群影响的比较研究. 暨南大学, 2019.
|
21. |
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol, 2019, 16(1): 35-56.
|
22. |
Janmohammadi P, Sajadi F, Alizadeh S, et al. Comparison of energy and food intake between gastric bypass and sleeve gastrectomy: a meta-analysis and systematic review. Obes Surg, 2019, 29(3): 1040-1048.
|
23. |
Rinninella E, Cintoni M, Raoul P, et al. Gut microbiota during dietary restrictions: new insights in non-communicable diseases. Microorganisms, 2020, 8(8): 1140. doi: 10.3390/microorganisms8081140.
|
24. |
Stein J, Stier C, Raab H, et al. Review article: The nutritional and pharmacological consequences of obesity surgery. Aliment Pharmacol Ther, 2014, 40(6): 582-609.
|
25. |
Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol, 2015, 17(12): 4954-4964.
|
26. |
Carvalho-Wells AL, Helmolz K, Nodet C, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr, 2010, 104(9): 1353-1356.
|
27. |
van de Wouw M, Schellekens H, Dinan TG, et al. Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr, 2017, 147(5): 727-745.
|
28. |
易显浩, 朱晒红, 李伟正, 等. 减重手术改善代谢的机制. 肿瘤代谢与营养电子杂志, 2021, 8(1): 93-98.
|
29. |
Ding L, Fang Z, Liu Y, et al. Targeting bile acid-activated receptors in bariatric surgery. Handb Exp Pharmacol, 2019, 256: 359-378.
|
30. |
Ilhan ZE, DiBaise JK, Dautel SE, et al. Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. NPJ Biofilms Microbiomes, 2020, 6(1): 12. doi: 10.1038/s41522-020-0122-5.
|
31. |
Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring), 2009, 17(9): 1671-1677.
|
32. |
Cerreto M, Santopaolo F, Gasbarrini A, et al. Bariatric surgery and liver disease: general considerations and role of the gut-liver axis. Nutrients, 2021, 13(8): 2649. doi: 10.3390/nu13082649.
|
33. |
Salazar N, Ponce-Alonso M, Garriga M, et al. Fecal metabolome and bacterial composition in severe obesity: impact of diet and bariatric surgery. Gut Microbes, 2022, 14(1): 2106102. doi: 10.1080/19490976.2022.2106102.
|
34. |
Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128.
|
35. |
Steinert RE, Feinle-Bisset C, Asarian L, et al. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev, 2017, 97(1): 411-463.
|
36. |
Federico A, Dallio M, Tolone S, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. In Vivo, 2016, 30(3): 321-330.
|
37. |
Wang L, Li P, Tang Z, et al. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci Rep, 2016, 6: 33251. doi: 10.1038/srep33251.
|
38. |
Lach G, Schellekens H, Dinan TG, et al. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics, 2018, 15(1): 36-59.
|
39. |
Chen G, Zhuang J, Cui Q, et al. Two bariatric surgical procedures differentially alter the intestinal microbiota in obesity patients. Obes Surg, 2020, 30(6): 2345-2361.
|
40. |
Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr, 2013, 98(1): 16-24.
|
41. |
朱江帆. 从上游探索减重手术治疗代谢综合征的机制. 中华消化外科杂志, 2017, 16(6): 559-561.
|
42. |
Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab, 2015, 22(2): 228-238.
|
43. |
Anhê FF, Zlitni S, Zhang SY, et al. Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity. Gut, 2022, gutjnl-2022-328185. doi: 10.1136/gutjnl-2022-328185.
|
44. |
de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients, 2018, 11(1): 51. doi: 10.3390/nu11010051.
|
45. |
Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med, 2013, 5(178): 178ra41. doi: 10.1126/scitranslmed.3005687.
|
46. |
Farup PG, Valeur J. Changes in faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity. Nutrients, 2020, 12(3): 802. doi: 10.3390/nu12030802.
|
47. |
Juárez-Fernández M, Román-Sagüillo S, Porras D, et al. Long-term effects of bariatric surgery on gut microbiota composition and faecal metabolome related to obesity remission. Nutrients, 2021, 13(8): 2519. doi: 10.3390/nu13082519.
|
48. |
Lin W, Wen L, Wen J, et al. Effects of sleeve gastrectomy on fecal gut microbiota and short-chain fatty acid content in a rat model of polycystic ovary syndrome. Front Endocrinol (Lausanne), 2021, 12: 747888. doi: 10.3389/fendo.2021.747888.
|
49. |
Duan L, An X, Zhang Y, et al. Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomed Pharmacother, 2021, 142: 112094. doi: 10.1016/j.biopha.2021.112094.
|
50. |
Gojda J, Cahova M. Gut microbiota as the link between elevated bcaa serum levels and insulin resistance. Biomolecules, 2021, 11(10): 1414. doi: 10.3390/biom11101414.
|
51. |
Zhou M, Shao J, Wu CY, et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes, 2019, 68(9): 1730-1746.
|
52. |
Hanvold SE, Vinknes KJ, Bastani NE, et al. Plasma amino acids, adiposity, and weight change after gastric bypass surgery: are amino acids associated with weight regain? Eur J Nutr, 2018, 57(7): 2629-2637.
|
53. |
Yoshida N, Yamashita T, Osone T, et al. Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience, 2021, 24(11): 103342. doi: 10.1016/j.isci.2021.103342.
|
54. |
Bozadjieva Kramer N, Evers SS, Shin JH, et al. The role of elevated branched-chain amino acids in the effects of vertical sleeve gastrectomy to reduce weight and improve glucose regulation. Cell Rep, 2020, 33(2): 108239. doi: 10.1016/j.celrep.2020.108239.
|
55. |
Trøseid M, Nestvold TK, Rudi K, et al. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care, 2013, 36(11): 3627-3632.
|
56. |
Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery, 2012, 151(4): 587-593.
|
57. |
Lu C, Li Y, Li L, et al. Alterations of serum uric acid level and gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a hyperuricemic rat model. Obes Surg, 2020, 30(5): 1799-1807.
|
58. |
Scheithauer TPM, Davids M, Winkelmeijer M, et al. Compensatory intestinal antibody response against pro-inflammatory microbiota after bariatric surgery. Gut Microbes, 2022, 14(1): 2031696. doi: 10.1080/19490976.2022.2031696.
|