- 1. The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China;
- 2. Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China;
Citation: MA Xiaopeng, DU Haoxuan, ZHU Kexiang. Advances in association between visceral fat and pancreatic cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2023, 30(4): 484-489. doi: 10.7507/1007-9424.202212038 Copy
1. | Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33. |
2. | 国家卫生健康委办公厅. 胰腺癌诊疗指南(2022年版). 临床肝胆病杂志, 2022, 38(5): 1006-1015. |
3. | Silveira EA, Kliemann N, Noll M, et al. Visceral obesity and incident cancer and cardiovascular disease: an integrative review of the epidemiological evidence. Obes Rev, 2021, 22(1): e13088. doi: 10.1111/obr.13088. |
4. | Xiao J, Mazurak VC, Olobatuyi TA, et al. Visceral adiposity and cancer survival: a review of imaging studies. Eur J Cancer Care (Engl), 2018, 27(2): e12611. doi: 10.1111/ecc.12611. |
5. | Masternak MM, Bartke A. Growth hormone, inflammation and aging. Pathobiol Aging Age Relat Dis, 2012, 2. doi: 10.3402/pba.v2i0.17293. |
6. | Stanley TL, Grinspoon SK. Effects of growth hormone-releasing hormone on visceral fat, metabolic, and cardiovascular indices in human studies. Growth Horm IGF Res, 2015, 25(2): 59-65. |
7. | de Oliveira GP, de Andrade DC, Nascimento ALR, et al. Insulin-like growth factor-1 short-period therapy stimulates bone marrow cells in obese swiss mice. Cell Tissue Res, 2021, 384(3): 721-734. |
8. | Kuk JL, Saunders TJ, Davidson LE, et al. Age-related changes in total and regional fat distribution. Ageing Res Rev, 2009, 8(4): 339-348. |
9. | Yamada M, Moriguch Y, Mitani T, et al. Age-dependent changes in skeletal muscle mass and visceral fat area in Japanese adults from 40 to 79 years-of-age. Geriatr Gerontol Int, 2014, 14 Suppl 1: 8-14. |
10. | Szulc P, Duboeuf F, Chapurlat R. Age-related changes in fat mass and distribution in men—the cross-sectional STRAMBO study. J Clin Densitom, 2017, 20(4): 472-479. |
11. | Swainson MG, Batterham AM, Hind K. Age- and sex-specific reference intervals for visceral fat mass in adults. Int J Obes (Lond), 2020, 44(2): 289-296. |
12. | Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol, 2015, 402: 113-119. |
13. | Staiano AE, Katzmarzyk PT. Visceral, subcutaneous, and total fat mass accumulation in a prospective cohort of adolescents. Am J Clin Nutr, 2022, 116(3): 780-785. |
14. | De Maddalena C, Vodo S, Petroni A, et al. Impact of testosterone on body fat composition. J Cell Physiol, 2012, 227(12): 3744-3748. |
15. | He Z, Rankinen T, Leon AS, et al. Plasma steroids, body composition, and fat distribution: effects of age, sex, and exercise training. Int J Obes (Lond), 2018, 42(7): 1366-1377. |
16. | Vihma V, Naukkarinen J, Turpeinen U, et al. Metabolism of sex steroids is influenced by acquired adiposity—A study of young adult male monozygotic twin pairs. J Steroid Biochem Mol Biol, 2017, 172: 98-105. |
17. | Sebo ZL, Rodeheffer MS. Testosterone metabolites differentially regulate obesogenesis and fat distribution. Mol Metab, 2021, 44: 101141. doi: 10.1016/j.molmet.2020.101141. |
18. | Chasland LC, Yeap BB, Maiorana AJ, et al. Testosterone and exercise: effects on fitness, body composition, and strength in middle-to-older aged men with low-normal serum testosterone levels. Am J Physiol Heart Circ Physiol, 2021, 320(5): H1985-H1998. doi: 10.1152/ajpheart.00010.2021. |
19. | Pan R, Chen Y. Fat biology and metabolic balance: on the significance of sex. Mol Cell Endocrinol, 2021, 533: 111336. doi: 10.1016/j.mce.2021.111336. |
20. | Duffy D, Rader D. Endocannabinoid antagonism: blocking the excess in the treatment of high-risk abdominal obesity. Trends Cardiovasc Med, 2007, 17(2): 35-43. |
21. | Jung KM, Lin L, Piomelli D. The endocannabinoid system in the adipose organ. Rev Endocr Metab Disord, 2022, 23(1): 51-60. |
22. | Bordicchia M, Battistoni I, Mancinelli L, et al. Cannabinoid CB1 receptor expression in relation to visceral adipose depots, endocann-abinoid levels, microvascular damage, and the presence of the Cnr1 A3813G variant in humans. Metabolism, 2010, 59(5): 734-741. |
23. | Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism, 2011, 60(11): 1500-1510. |
24. | Geer EB, Shen W, Gallagher D, et al. MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin Endocrinol (Oxf), 2010, 73(4): 469-475. |
25. | Ferraù F, Korbonits M. Metabolic syndrome in Cushing’s syndrome patients. Front Horm Res, 2018, 49: 85-103. |
26. | Salehidoost R, Korbonits M. Glucose and lipid metabolism abnormalities in Cushing’s syndrome. J Neuroendocrinol, 2022, 34(8): e13143. doi: 10.1111/jne.13143. |
27. | Mousovich-Neto F, Matos MS, Costa ACR, et al. Brown adipose tissue remodelling induced by corticosterone in male Wistar rats. Exp Physiol, 2019, 104(4): 514-528. |
28. | Rosqvist F, Iggman D, Kullberg J, et al. Overfeeding polyun-saturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes, 2014, 63(7): 2356-2368. |
29. | Magnuson AM, Regan DP, Booth AD, et al. High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice. Eur J Nutr, 2020, 59(4): 1641-1654. |
30. | Lelis DF, Andrade JMO, Almenara CCP, et al. High fructose intake and the route towards cardiometabolic diseases. Life Sci, 2020, 259: 118235. doi: 10.1016/j.lfs.2020.118235. |
31. | Olsen RH, Krogh-Madsen R, Thomsen C, et al. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA, 2008, 299(11): 1261-1263. |
32. | Ando S, Koyama T, Kuriyama N, et al. The association of daily physical activity behaviors with visceral fat. Obes Res Clin Pract, 2020, 14(6): 531-535. |
33. | Zhang H, Tong TK, Kong Z, et al. Exercise training-induced visceral fat loss in obese women: the role of training intensity and modality. Scand J Med Sci Sports, 2021, 31(1): 30-43. |
34. | Cani PD, Van Hul M, Lefort C, et al. Microbial regulation of organismal energy homeostasis. Nat Metab, 2019, 1(1): 34-46. |
35. | Spanogiannopoulos P, Bess EN, Carmody RN, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol, 2016, 14(5): 273-287. |
36. | Kim D, Zeng MY, Núñez G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med, 2017, 49(5): e339. doi: 10.1038/emm.2017.24. |
37. | Nie X, Chen J, Ma X, et al. A metagenome-wide association study of gut microbiome and visceral fat accumulation. Comput Struct Biotechnol J, 2020, 18: 2596-2609. |
38. | Le Roy CI, Bowyer RCE, Castillo-Fernandez JE, et al. Dissecting the role of the gut microbiota and diet on visceral fat mass accumul-ation. Sci Rep, 2019, 9(1): 9758. doi: 10.1038/s41598-019-46193-w. |
39. | Anhê FF, Nachbar RT, Varin TV, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut, 2019, 68(3): 453-464. |
40. | Tavella T, Rampelli S, Guidarelli G, et al. Elevated gut microbiome abund-ance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes, 2021, 13(1): 1-19. |
41. | Agrawal S, Wang M, Klarqvist MDR, et al. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat Commun, 2022, 13(1): 3771. doi: 10.1038/s41467-022-30931-2. |
42. | Shin J, Syme C, Wang D, et al. Novel genetic locus of visceral fat and systemic inflammation. J Clin Endocrinol Metab, 2019, 104(9): 3735-3742. |
43. | Ramakrishna A, Bale LK, West SA, et al. Genetic and pharmacological inhibition of PAPP-A protects against visceral obesity in mice. Endocrinology, 2020, 161(10): bqaa160. |
44. | Ragino YI, Stakhneva EM, Polonskaya YV, et al. The role of secretory activity molecules of visceral adipocytes in abdominal obesity in the development of cardiovascular disease: a review. Biomolecules, 2020, 10(3): 374. doi: 10.3390/biom10030374. |
45. | Lin TC, Hsiao M. Leptin and cancer: updated functional roles in carcinogenesis, therapeutic niches, and developments. Int J Mol Sci, 2021, 22(6): 2870. doi: 10.3390/ijms22062870. |
46. | de Candia P, Prattichizzo F, Garavelli S, et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med, 2021, 218(5): e20191593. doi: 10.1084/jem.20191593. |
47. | Harbuzariu A, Rampoldi A, Daley-Brown DS, et al. Leptin-Notch signaling axis is involved in pancreatic cancer progression. Oncotarget, 2017, 8(5): 7740-7752. |
48. | Ma L, Fan Z, Du G, et al. Leptin-elicited miRNA-342-3p potentiates gemcitabine resistance in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun, 2019, 509(3): 845-853. |
49. | Messaggio F, Mendonsa AM, Castellanos J, et al. Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget, 2017, 8(49): 85378-85391. |
50. | Xu Y, Tan M, Tian X, et al. Leptin receptor mediates the proliferation and glucose metabolism of pancreatic cancer cells via AKT pathway activation. Mol Med Rep, 2020, 21(2): 945-952. |
51. | Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 1995, 270(45): 26746-26749. |
52. | Parida S, Siddharth S, Sharma D. Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. Int J Mol Sci, 2019, 20(10): 2519. doi: 10.3390/ijms20102519. |
53. | Bao Y, Giovannucci EL, Kraft P, et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J Natl Cancer Inst, 2013, 105(2): 95-103. |
54. | Jiang J, Fan Y, Zhang W, et al. Adiponectin suppresses human pancreatic cancer growth through attenuating the β-catenin signaling pathway. Int J Biol Sci, 2019, 15(2): 253-264. |
55. | Huang B, Cheng X, Wang D, et al. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling. Oncotarget, 2014, 5(13): 4732-4745. |
56. | Deb A, Deshmukh B, Ramteke P, et al. Resistin: a journey from metabolism to cancer. Transl Oncol, 2021, 14(10): 101178. doi: 10.1016/j.tranon.2021.101178. |
57. | 姜翀弋, 袁祖荣, 王巍, 等. 脂肪细胞因子resistin在胰腺导管腺癌中的表达与临床意义. 外科理论与实践, 2011, 16(5): 461-464. |
58. | 刘猛, 王巍, 姜翀弋, 等. 脂肪细胞因子resistin与炎症因子在胰腺癌中的表达及其临床意义. 中华肝胆外科杂志, 2018, 24(6): 400-404. |
59. | 尚鸳鸳, 朱桂丽, 邢建强. 乳酸脱氢酶与脂肪细胞因子resistin在胰腺癌中的表达及其临床意义. 实用癌症杂志, 2021, 36(6): 935-938. |
60. | Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci, 2019, 20(3): 676. doi: 10.3390/ijms20030676. |
61. | Chopra M, Lang I, Salzmann S, et al. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS One, 2013, 8(9): e75737. doi: 10.1371/journal.pone.0075737. |
62. | Cheng YH, Chiang EI, Syu JN, et al. Treatment of 13-cis retinoic acid and 1, 25-dihydroxyvitamin D3 inhibits TNF-alpha-mediated expression of MMP-9 protein and cell invasion through the suppression of JNK pathway and microRNA 221 in human pancreatic adenocarcinoma cancer cells. PLoS One, 2021, 16(3): e0247550. doi: 10.1371/journal.pone.0247550. |
63. | Adjuto-Saccone M, Soubeyran P, Garcia J, et al. TNF-α induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis, 2021, 12(7): 649. doi: 10.1038/s41419-021-03920-4. |
64. | Tekin C, Aberson HL, Bijlsma MF, et al. Early macrophage infiltrates impair pancreatic cancer cell growth by TNF-α secretion. BMC Cancer, 2020, 20(1): 1183. doi: 10.1186/s12885-020-07697-1. |
65. | van Duijneveldt G, Griffin MDW, Putoczki TL. Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond), 2020, 134(16): 2091-2115. |
66. | Chen X, Tian J, Su GH, et al. Blocking IL-6/GP130 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity in human pancreatic cancer cells. Curr Cancer Drug Targets, 2019, 19(5): 417-427. |
67. | Shen F, Liu C, Zhang W, et al. Serum levels of IL-6 and CRP can predict the efficacy of mFOLFIRINOX in patients with advanced pancreatic cancer. Front Oncol, 2022, 12: 964115. doi: 10.3389/fonc.2022.964115. |
68. | Pan L, Huang X, Liu ZX, et al. Inflammatory cytokine-regulated tRNA-derived fragment tRF-21 suppresses pancreatic ductal adenocarcinoma progression. J Clin Invest, 2021, 131(22): e148130. doi: 10.1172/JCI148130. |
69. | Magni L, Bouazzi R, Heredero Olmedilla H, et al. The P2X7 receptor stimulates IL-6 release from pancreatic stellate cells and tocilizumab prevents activation of STAT3 in pancreatic cancer cells. Cells, 2021, 10(8): 1928. doi: 10.3390/cells10081928. |
70. | Okitsu K, Kanda T, Imazeki F, et al. Involvement of interleukin-6 and androgen receptor signaling in pancreatic cancer. Genes Cancer, 2010, 1(8): 859-867. |
71. | Huang L, Hu B, Ni J, et al. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J Exp Clin Cancer Res, 2016, 35: 27. doi: 10.1186/s13046-016-0301-7. |
72. | Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev, 2017, 60: 24-31. |
73. | Chen L, Fan J, Chen H, et al. The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep, 2014, 4: 5911. doi: 10.1038/srep05911. |
74. | Chen Y, Peng S, Cen H, et al. MicroRNA hsa-miR-623 directly suppresses MMP1 and attenuates IL-8-induced metastasis in pancreatic cancer. Int J Oncol, 2019, 55(1): 142-156. |
75. | Hussain F, Wang J, Ahmed R, et al. The expression of IL-8 and IL-8 receptors in pancreatic adenocarcinomas and pancreatic neuroendocrine tumours. Cytokine, 2010, 49(2): 134-140. |
76. | Chen SJ, Lian GD, Li JJ, et al. Tumor-driven like macrophages induced by conditioned media from pancreatic ductal adenocarcinoma promote tumor metastasis via secreting IL-8. Cancer Med, 2018, 7(11): 5679-5690. |
77. | Merz V, Zecchetto C, Santoro R, et al. Plasma IL8 is a biomarker for TAK1 activation and predicts resistance to nanoliposomal irinotecan in patients with gemcitabine-refractory pancreatic cancer. Clin Cancer Res, 2020, 26(17): 4661-4669. |
78. | Fang H, Berg E, Cheng X, et al. How to best assess abdominal obesity. Curr Opin Clin Nutr Metab Care, 2018, 21(5): 360-365. |
79. | Naboush A, Hamdy O. Measuring visceral and hepatic fat in clinical practice and clinical research. Endocr Pract, 2013, 19(4): 587-589. |
80. | Cheng X, Zhang Y, Wang C, et al. The optimal anatomic site for a single slice to estimate the total volume of visceral adipose tissue by using the quantitative computed tomography (QCT) in Chinese population. Eur J Clin Nutr, 2018, 72(11): 1567-1575. |
81. | Kim B, Chung MJ, Park SW, et al. Visceral obesity is associated with poor prognosis in pancreatic adenocarcinoma. Nutr Cancer, 2016, 68(2): 201-207. |
82. | van Dijk DP, Bakens MJ, Coolsen MM, et al. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J Cachexia Sarcopenia Muscle, 2017, 8(2): 317-326. |
83. | Okumura S, Kaido T, Hamaguchi Y, et al. Visceral adiposity and sarcopenic visceral obesity are associated with poor prognosis after resection of pancreatic cancer. Ann Surg Oncol, 2017, 24(12): 3732-3740. |
84. | Bian X, Dai H, Feng J, et al. Prognostic values of abdominal body compositions on survival in advanced pancreatic cancer. Medicine (Baltimore), 2018, 97(22): e10988. doi: 10.1097/MD.0000000000010988. |
85. | Wochner R, Clauss D, Nattenmüller J, et al. Impact of progressive resistance training on CT quantified muscle and adipose tissue compartments in pancreatic cancer patients. PLoS One, 2020, 15(11): e0242785. doi: 10.1371/journal.pone.0242785. |
- 1. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33.
- 2. 国家卫生健康委办公厅. 胰腺癌诊疗指南(2022年版). 临床肝胆病杂志, 2022, 38(5): 1006-1015.
- 3. Silveira EA, Kliemann N, Noll M, et al. Visceral obesity and incident cancer and cardiovascular disease: an integrative review of the epidemiological evidence. Obes Rev, 2021, 22(1): e13088. doi: 10.1111/obr.13088.
- 4. Xiao J, Mazurak VC, Olobatuyi TA, et al. Visceral adiposity and cancer survival: a review of imaging studies. Eur J Cancer Care (Engl), 2018, 27(2): e12611. doi: 10.1111/ecc.12611.
- 5. Masternak MM, Bartke A. Growth hormone, inflammation and aging. Pathobiol Aging Age Relat Dis, 2012, 2. doi: 10.3402/pba.v2i0.17293.
- 6. Stanley TL, Grinspoon SK. Effects of growth hormone-releasing hormone on visceral fat, metabolic, and cardiovascular indices in human studies. Growth Horm IGF Res, 2015, 25(2): 59-65.
- 7. de Oliveira GP, de Andrade DC, Nascimento ALR, et al. Insulin-like growth factor-1 short-period therapy stimulates bone marrow cells in obese swiss mice. Cell Tissue Res, 2021, 384(3): 721-734.
- 8. Kuk JL, Saunders TJ, Davidson LE, et al. Age-related changes in total and regional fat distribution. Ageing Res Rev, 2009, 8(4): 339-348.
- 9. Yamada M, Moriguch Y, Mitani T, et al. Age-dependent changes in skeletal muscle mass and visceral fat area in Japanese adults from 40 to 79 years-of-age. Geriatr Gerontol Int, 2014, 14 Suppl 1: 8-14.
- 10. Szulc P, Duboeuf F, Chapurlat R. Age-related changes in fat mass and distribution in men—the cross-sectional STRAMBO study. J Clin Densitom, 2017, 20(4): 472-479.
- 11. Swainson MG, Batterham AM, Hind K. Age- and sex-specific reference intervals for visceral fat mass in adults. Int J Obes (Lond), 2020, 44(2): 289-296.
- 12. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol, 2015, 402: 113-119.
- 13. Staiano AE, Katzmarzyk PT. Visceral, subcutaneous, and total fat mass accumulation in a prospective cohort of adolescents. Am J Clin Nutr, 2022, 116(3): 780-785.
- 14. De Maddalena C, Vodo S, Petroni A, et al. Impact of testosterone on body fat composition. J Cell Physiol, 2012, 227(12): 3744-3748.
- 15. He Z, Rankinen T, Leon AS, et al. Plasma steroids, body composition, and fat distribution: effects of age, sex, and exercise training. Int J Obes (Lond), 2018, 42(7): 1366-1377.
- 16. Vihma V, Naukkarinen J, Turpeinen U, et al. Metabolism of sex steroids is influenced by acquired adiposity—A study of young adult male monozygotic twin pairs. J Steroid Biochem Mol Biol, 2017, 172: 98-105.
- 17. Sebo ZL, Rodeheffer MS. Testosterone metabolites differentially regulate obesogenesis and fat distribution. Mol Metab, 2021, 44: 101141. doi: 10.1016/j.molmet.2020.101141.
- 18. Chasland LC, Yeap BB, Maiorana AJ, et al. Testosterone and exercise: effects on fitness, body composition, and strength in middle-to-older aged men with low-normal serum testosterone levels. Am J Physiol Heart Circ Physiol, 2021, 320(5): H1985-H1998. doi: 10.1152/ajpheart.00010.2021.
- 19. Pan R, Chen Y. Fat biology and metabolic balance: on the significance of sex. Mol Cell Endocrinol, 2021, 533: 111336. doi: 10.1016/j.mce.2021.111336.
- 20. Duffy D, Rader D. Endocannabinoid antagonism: blocking the excess in the treatment of high-risk abdominal obesity. Trends Cardiovasc Med, 2007, 17(2): 35-43.
- 21. Jung KM, Lin L, Piomelli D. The endocannabinoid system in the adipose organ. Rev Endocr Metab Disord, 2022, 23(1): 51-60.
- 22. Bordicchia M, Battistoni I, Mancinelli L, et al. Cannabinoid CB1 receptor expression in relation to visceral adipose depots, endocann-abinoid levels, microvascular damage, and the presence of the Cnr1 A3813G variant in humans. Metabolism, 2010, 59(5): 734-741.
- 23. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism, 2011, 60(11): 1500-1510.
- 24. Geer EB, Shen W, Gallagher D, et al. MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin Endocrinol (Oxf), 2010, 73(4): 469-475.
- 25. Ferraù F, Korbonits M. Metabolic syndrome in Cushing’s syndrome patients. Front Horm Res, 2018, 49: 85-103.
- 26. Salehidoost R, Korbonits M. Glucose and lipid metabolism abnormalities in Cushing’s syndrome. J Neuroendocrinol, 2022, 34(8): e13143. doi: 10.1111/jne.13143.
- 27. Mousovich-Neto F, Matos MS, Costa ACR, et al. Brown adipose tissue remodelling induced by corticosterone in male Wistar rats. Exp Physiol, 2019, 104(4): 514-528.
- 28. Rosqvist F, Iggman D, Kullberg J, et al. Overfeeding polyun-saturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes, 2014, 63(7): 2356-2368.
- 29. Magnuson AM, Regan DP, Booth AD, et al. High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice. Eur J Nutr, 2020, 59(4): 1641-1654.
- 30. Lelis DF, Andrade JMO, Almenara CCP, et al. High fructose intake and the route towards cardiometabolic diseases. Life Sci, 2020, 259: 118235. doi: 10.1016/j.lfs.2020.118235.
- 31. Olsen RH, Krogh-Madsen R, Thomsen C, et al. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA, 2008, 299(11): 1261-1263.
- 32. Ando S, Koyama T, Kuriyama N, et al. The association of daily physical activity behaviors with visceral fat. Obes Res Clin Pract, 2020, 14(6): 531-535.
- 33. Zhang H, Tong TK, Kong Z, et al. Exercise training-induced visceral fat loss in obese women: the role of training intensity and modality. Scand J Med Sci Sports, 2021, 31(1): 30-43.
- 34. Cani PD, Van Hul M, Lefort C, et al. Microbial regulation of organismal energy homeostasis. Nat Metab, 2019, 1(1): 34-46.
- 35. Spanogiannopoulos P, Bess EN, Carmody RN, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol, 2016, 14(5): 273-287.
- 36. Kim D, Zeng MY, Núñez G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med, 2017, 49(5): e339. doi: 10.1038/emm.2017.24.
- 37. Nie X, Chen J, Ma X, et al. A metagenome-wide association study of gut microbiome and visceral fat accumulation. Comput Struct Biotechnol J, 2020, 18: 2596-2609.
- 38. Le Roy CI, Bowyer RCE, Castillo-Fernandez JE, et al. Dissecting the role of the gut microbiota and diet on visceral fat mass accumul-ation. Sci Rep, 2019, 9(1): 9758. doi: 10.1038/s41598-019-46193-w.
- 39. Anhê FF, Nachbar RT, Varin TV, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut, 2019, 68(3): 453-464.
- 40. Tavella T, Rampelli S, Guidarelli G, et al. Elevated gut microbiome abund-ance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes, 2021, 13(1): 1-19.
- 41. Agrawal S, Wang M, Klarqvist MDR, et al. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat Commun, 2022, 13(1): 3771. doi: 10.1038/s41467-022-30931-2.
- 42. Shin J, Syme C, Wang D, et al. Novel genetic locus of visceral fat and systemic inflammation. J Clin Endocrinol Metab, 2019, 104(9): 3735-3742.
- 43. Ramakrishna A, Bale LK, West SA, et al. Genetic and pharmacological inhibition of PAPP-A protects against visceral obesity in mice. Endocrinology, 2020, 161(10): bqaa160.
- 44. Ragino YI, Stakhneva EM, Polonskaya YV, et al. The role of secretory activity molecules of visceral adipocytes in abdominal obesity in the development of cardiovascular disease: a review. Biomolecules, 2020, 10(3): 374. doi: 10.3390/biom10030374.
- 45. Lin TC, Hsiao M. Leptin and cancer: updated functional roles in carcinogenesis, therapeutic niches, and developments. Int J Mol Sci, 2021, 22(6): 2870. doi: 10.3390/ijms22062870.
- 46. de Candia P, Prattichizzo F, Garavelli S, et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med, 2021, 218(5): e20191593. doi: 10.1084/jem.20191593.
- 47. Harbuzariu A, Rampoldi A, Daley-Brown DS, et al. Leptin-Notch signaling axis is involved in pancreatic cancer progression. Oncotarget, 2017, 8(5): 7740-7752.
- 48. Ma L, Fan Z, Du G, et al. Leptin-elicited miRNA-342-3p potentiates gemcitabine resistance in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun, 2019, 509(3): 845-853.
- 49. Messaggio F, Mendonsa AM, Castellanos J, et al. Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget, 2017, 8(49): 85378-85391.
- 50. Xu Y, Tan M, Tian X, et al. Leptin receptor mediates the proliferation and glucose metabolism of pancreatic cancer cells via AKT pathway activation. Mol Med Rep, 2020, 21(2): 945-952.
- 51. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 1995, 270(45): 26746-26749.
- 52. Parida S, Siddharth S, Sharma D. Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. Int J Mol Sci, 2019, 20(10): 2519. doi: 10.3390/ijms20102519.
- 53. Bao Y, Giovannucci EL, Kraft P, et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J Natl Cancer Inst, 2013, 105(2): 95-103.
- 54. Jiang J, Fan Y, Zhang W, et al. Adiponectin suppresses human pancreatic cancer growth through attenuating the β-catenin signaling pathway. Int J Biol Sci, 2019, 15(2): 253-264.
- 55. Huang B, Cheng X, Wang D, et al. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling. Oncotarget, 2014, 5(13): 4732-4745.
- 56. Deb A, Deshmukh B, Ramteke P, et al. Resistin: a journey from metabolism to cancer. Transl Oncol, 2021, 14(10): 101178. doi: 10.1016/j.tranon.2021.101178.
- 57. 姜翀弋, 袁祖荣, 王巍, 等. 脂肪细胞因子resistin在胰腺导管腺癌中的表达与临床意义. 外科理论与实践, 2011, 16(5): 461-464.
- 58. 刘猛, 王巍, 姜翀弋, 等. 脂肪细胞因子resistin与炎症因子在胰腺癌中的表达及其临床意义. 中华肝胆外科杂志, 2018, 24(6): 400-404.
- 59. 尚鸳鸳, 朱桂丽, 邢建强. 乳酸脱氢酶与脂肪细胞因子resistin在胰腺癌中的表达及其临床意义. 实用癌症杂志, 2021, 36(6): 935-938.
- 60. Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci, 2019, 20(3): 676. doi: 10.3390/ijms20030676.
- 61. Chopra M, Lang I, Salzmann S, et al. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS One, 2013, 8(9): e75737. doi: 10.1371/journal.pone.0075737.
- 62. Cheng YH, Chiang EI, Syu JN, et al. Treatment of 13-cis retinoic acid and 1, 25-dihydroxyvitamin D3 inhibits TNF-alpha-mediated expression of MMP-9 protein and cell invasion through the suppression of JNK pathway and microRNA 221 in human pancreatic adenocarcinoma cancer cells. PLoS One, 2021, 16(3): e0247550. doi: 10.1371/journal.pone.0247550.
- 63. Adjuto-Saccone M, Soubeyran P, Garcia J, et al. TNF-α induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis, 2021, 12(7): 649. doi: 10.1038/s41419-021-03920-4.
- 64. Tekin C, Aberson HL, Bijlsma MF, et al. Early macrophage infiltrates impair pancreatic cancer cell growth by TNF-α secretion. BMC Cancer, 2020, 20(1): 1183. doi: 10.1186/s12885-020-07697-1.
- 65. van Duijneveldt G, Griffin MDW, Putoczki TL. Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond), 2020, 134(16): 2091-2115.
- 66. Chen X, Tian J, Su GH, et al. Blocking IL-6/GP130 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity in human pancreatic cancer cells. Curr Cancer Drug Targets, 2019, 19(5): 417-427.
- 67. Shen F, Liu C, Zhang W, et al. Serum levels of IL-6 and CRP can predict the efficacy of mFOLFIRINOX in patients with advanced pancreatic cancer. Front Oncol, 2022, 12: 964115. doi: 10.3389/fonc.2022.964115.
- 68. Pan L, Huang X, Liu ZX, et al. Inflammatory cytokine-regulated tRNA-derived fragment tRF-21 suppresses pancreatic ductal adenocarcinoma progression. J Clin Invest, 2021, 131(22): e148130. doi: 10.1172/JCI148130.
- 69. Magni L, Bouazzi R, Heredero Olmedilla H, et al. The P2X7 receptor stimulates IL-6 release from pancreatic stellate cells and tocilizumab prevents activation of STAT3 in pancreatic cancer cells. Cells, 2021, 10(8): 1928. doi: 10.3390/cells10081928.
- 70. Okitsu K, Kanda T, Imazeki F, et al. Involvement of interleukin-6 and androgen receptor signaling in pancreatic cancer. Genes Cancer, 2010, 1(8): 859-867.
- 71. Huang L, Hu B, Ni J, et al. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J Exp Clin Cancer Res, 2016, 35: 27. doi: 10.1186/s13046-016-0301-7.
- 72. Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev, 2017, 60: 24-31.
- 73. Chen L, Fan J, Chen H, et al. The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep, 2014, 4: 5911. doi: 10.1038/srep05911.
- 74. Chen Y, Peng S, Cen H, et al. MicroRNA hsa-miR-623 directly suppresses MMP1 and attenuates IL-8-induced metastasis in pancreatic cancer. Int J Oncol, 2019, 55(1): 142-156.
- 75. Hussain F, Wang J, Ahmed R, et al. The expression of IL-8 and IL-8 receptors in pancreatic adenocarcinomas and pancreatic neuroendocrine tumours. Cytokine, 2010, 49(2): 134-140.
- 76. Chen SJ, Lian GD, Li JJ, et al. Tumor-driven like macrophages induced by conditioned media from pancreatic ductal adenocarcinoma promote tumor metastasis via secreting IL-8. Cancer Med, 2018, 7(11): 5679-5690.
- 77. Merz V, Zecchetto C, Santoro R, et al. Plasma IL8 is a biomarker for TAK1 activation and predicts resistance to nanoliposomal irinotecan in patients with gemcitabine-refractory pancreatic cancer. Clin Cancer Res, 2020, 26(17): 4661-4669.
- 78. Fang H, Berg E, Cheng X, et al. How to best assess abdominal obesity. Curr Opin Clin Nutr Metab Care, 2018, 21(5): 360-365.
- 79. Naboush A, Hamdy O. Measuring visceral and hepatic fat in clinical practice and clinical research. Endocr Pract, 2013, 19(4): 587-589.
- 80. Cheng X, Zhang Y, Wang C, et al. The optimal anatomic site for a single slice to estimate the total volume of visceral adipose tissue by using the quantitative computed tomography (QCT) in Chinese population. Eur J Clin Nutr, 2018, 72(11): 1567-1575.
- 81. Kim B, Chung MJ, Park SW, et al. Visceral obesity is associated with poor prognosis in pancreatic adenocarcinoma. Nutr Cancer, 2016, 68(2): 201-207.
- 82. van Dijk DP, Bakens MJ, Coolsen MM, et al. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J Cachexia Sarcopenia Muscle, 2017, 8(2): 317-326.
- 83. Okumura S, Kaido T, Hamaguchi Y, et al. Visceral adiposity and sarcopenic visceral obesity are associated with poor prognosis after resection of pancreatic cancer. Ann Surg Oncol, 2017, 24(12): 3732-3740.
- 84. Bian X, Dai H, Feng J, et al. Prognostic values of abdominal body compositions on survival in advanced pancreatic cancer. Medicine (Baltimore), 2018, 97(22): e10988. doi: 10.1097/MD.0000000000010988.
- 85. Wochner R, Clauss D, Nattenmüller J, et al. Impact of progressive resistance training on CT quantified muscle and adipose tissue compartments in pancreatic cancer patients. PLoS One, 2020, 15(11): e0242785. doi: 10.1371/journal.pone.0242785.