1. |
Wang J, Yu F, Shang Y, et al. Thyroid cancer: incidence and mortality trends in China, 2005-2015. Endocrine, 2020, 68(1): 163-173.
|
2. |
Araque KA, Gubbi S, Klubo-Gwiezdzinska J. Updates on the management of thyroid cancer. Horm Metab Res, 2020, 52(8): 562-577.
|
3. |
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics, 2021, 11(13): 6251-6277.
|
4. |
Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet, 2014, 384(9940): 319-328.
|
5. |
Cheng L, Fu H, Jin Y, et al. Clinicopathological features predict outcomes in patients with radioiodine-refractory differentiated thyroid cancer treated with sorafenib: A real-world study. Oncologist, 2020, 25(4): e668-e678.
|
6. |
Kim M, Jin M, Jeon MJ, et al. Lenvatinib compared with sorafenib as a first-line treatment for radioactive iodine-refractory, progressive, differentiated thyroid carcinoma: Real-world outcomes in a multicenter retrospective cohort study. Thyroid, 2023, 33(1): 91-99.
|
7. |
Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med, 2015, 372(7): 621-630.
|
8. |
Brose MS, Worden FP, Newbold KL, et al. Effect of age on the efficacy and safety of lenvatinib in radioiodine-refractory differentiated thyroid cancer in the phase III SELECT trial. J Clin Oncol, 2017, 35(23): 2692-2699.
|
9. |
Zheng X, Xu Z, Ji Q, et al. A randomized, phase III study of lenvatinib in Chinese patients with radioiodine-refractory differentiated thyroid cancer. Clin Cancer Res, 2021, 27(20): 5502-5509.
|
10. |
National Comprehensive Cancer Network. Thyroid Carcinoma Version 1.2023. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf .
|
11. |
Goto H, Kiyota N, Otsuki N, et al. Successful treatment switch from lenvatinib to sorafenib in a patient with radioactive iodine-refractory differentiated thyroid cancer intolerant to lenvatinib due to severe proteinuria. Auris Nasus Larynx, 2018, 45(6): 1249-1252.
|
12. |
Kim SY, Kim SM, Chang HJ, et al. SoLAT (Sorafenib Lenvatinib alternating treatment): a new treatment protocol with alternating sorafenib and lenvatinib for refractory thyroid cancer. BMC Cancer, 2018, 18(1): 956.
|
13. |
Maroto P, Porta C, Capdevila J, et al. Cabozantinib for the treatment of solid tumors: a systematic review. Ther Adv Med Oncol, 2022, 14: 17588359221107112. doi: 10.1177/17588359221107112.
|
14. |
Brose MS, Robinson B, Sherman SI, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2021, 22(8): 1126-1138.
|
15. |
Brose MS, Robinson BG, Sherman SI, et al. Cabozantinib for previously treated radioiodine-refractory differentiated thyroid cancer: Updated results from the phase 3 COSMIC-311 trial. Cancer, 2022, 128(24): 4203-4212.
|
16. |
Leboulleux S, Bastholt L, Krause T, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol, 2012, 13(9): 897-905.
|
17. |
Bible KC, Menefee ME, Lin CJ, et al. An international phase 2 study of pazopanib in progressive and metastatic thyroglobulin antibody negative radioactive iodine refractory differentiated thyroid cancer. Thyroid, 2020, 30(9): 1254-1262.
|
18. |
Ji X, Liang W, Lv G, et al. Efficacy and safety of targeted therapeutics for patients with radioiodine-refractory differentiated thyroid cancer: Systematic review and network meta-analysis. Front Pharmacol, 2022, 13: 933648.
|
19. |
de la Fouchardière C, Godbert Y, Dalban C, et al. Intermittent versus continuous administration of pazopanib in progressive radioiodine refractory thyroid carcinoma: Final results of the randomised, multicenter, open-label phase Ⅱ trial PAZOTHYR. Eur J Cancer, 2021, 157: 153-164.
|
20. |
崔广华, 杨宇. 安罗替尼在晚期恶性肿瘤治疗中的研究进展. 现代肿瘤医学, 2022, 30(16): 3032-3036.
|
21. |
Chi Y, Gao M, Zhang Y, et al. 265O anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: A randomized, double-blind, multicenter phase Ⅱ trial. Ann Oncol, 2020, 31(6_suppl): S1347.
|
22. |
Tian Z, Niu X, Yao W. Efficacy and response biomarkers of apatinib in the treatment of malignancies in China: A review. Front Oncol, 2021, 11: 749083.
|
23. |
Lin YS, Zhang X, Wang C, et al. Long-term results of a phaseⅡtrial of apatinib for progressive radioiodine refractory differentiated thyroid cancer. J Clin Endocrinol Metab, 2021, 106(8): e3027-e3036.
|
24. |
Lin Y, Qin S, Li Z, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: The REALITY randomized clinical trial. JAMA Oncol, 2022, 8(2): 242-250.
|
25. |
Liu S, Wu F, Zhang Y, et al. Apatinib combined with radiotherapy enhances antitumor effects in an in vivo nasopharyngeal carcinoma model. Cancer Control, 2020, 27(1): 1073274820922553. doi: 10.1177/1073274820922553.
|
26. |
Wirth LJ, Sherman E, Robinson B, et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med, 2020, 383(9): 825-835.
|
27. |
Zheng X, Ji Q, Sun Y, et al. Efficacy and safety of selpercatinib in Chinese patients with advanced RET-altered thyroid cancers: results from the phaseⅡ LIBRETTO-321 study. Ther Adv Med Oncol, 2022, 14: 17588359221119318. doi: 10.1177/17588359221119318.
|
28. |
Subbiah V, Hu MI, Wirth LJ, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501.
|
29. |
Shabbir A, Kojadinovic A, Shafiq T, et al. Targeting RET alterations in cancer: Recent progress and future directions. Crit Rev Oncol Hematol, 2023, 181: 103882.
|
30. |
Drilon AE, Zhai D, Rogers E, et al. The next-generation RET inhibitor TPX-0046 is active in drug-resistant and naïve RET-driven cancer models. J Clin Oncol, 2020, 38(15_suppl): 3616-3616.
|
31. |
Bauer AJ. Molecular genetics of thyroid cancer in children and adolescents. Endocrinol Metab Clin North Am, 2017, 46(2): 389-403.
|
32. |
Waguespack SG, Drilon A, Lin JJ, et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol, 2022, 186(6): 631-643.
|
33. |
Groussin L, Theodon H, Bessiene L, et al. Redifferentiating effect of larotrectinib in NTRK-rearranged advanced radioactive-iodine refractory thyroid cancer. Thyroid, 2022, 32(5): 594-598.
|
34. |
Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol, 2020, 21(2): 271-282.
|
35. |
Brose MS, Cabanillas ME, Cohen EE, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol, 2016, 17(9): 1272-1282.
|
36. |
Hu L, Zhang J, Tian M, et al. Pharmacological inhibition of Ref-1 enhances the therapeutic sensitivity of papillary thyroid carcinoma to vemurafenib. Cell Death Dis, 2022, 13(2): 124.
|
37. |
Bonaldi E, Gargiuli C, De Cecco L, et al. BRAF inhibitors induce feedback activation of RAS pathway in thyroid cancer cells. Int J Mol Sci, 2021, 22(11): 5744.
|
38. |
Chen S, Su X, Jiang X, et al. VCAM-1 upregulation contributes to insensitivity of vemurafenib in BRAF-mutant thyroid cancer. Transl Oncol, 2020, 13(2): 441-451.
|
39. |
McFadden DG, Vernon A, Santiago PM, et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A, 2014, 111(16): E1600-E1609.
|
40. |
Busaidy NL, Konda B, Wei L, et al. Dabrafenib versus dabrafenib + trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial. Thyroid, 2022, 32(10): 1184-1192.
|
41. |
Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med, 2013, 368(7): 623-632.
|
42. |
Ho AL, Dedecjus M, Wirth LJ, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: A phase Ⅲ, randomized, placebo-controlled trial (ASTRA). J Clin Oncol, 2022, 40(17): 1870-1878.
|
43. |
Li J, Zhang Y, Sun F, et al. Towards an era of precise diagnosis and treatment: Role of novel molecular modification-based imaging and therapy for dedifferentiated thyroid cancer. Front Endocrinol (Lausanne), 2022, 13: 980582.
|
44. |
Wang X, Hawk N, Yue P, et al. Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors' anticancer efficacy. Cancer Biol Ther, 2008, 7(12): 1952-1958.
|
45. |
Bauman JE, Chen Z, Zhang C, et al. A multicenter randomized phaseⅡ study of single agent efficacy and optimal combination sequence of everolimus and pasireotide LAR in advanced thyroid cancer. Cancers (Basel), 2022, 14(11): 2639.
|
46. |
Sherman EJ, Dunn LA, Ho AL, et al. Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer, 2017, 123(21): 4114-4121.
|
47. |
Chowdhury S, Veyhl J, Jessa F, et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget, 2016, 7(22): 32318-32328.
|
48. |
Mehnert JM, Varga A, Brose MS, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer. BMC Cancer, 2019, 19(1): 196.
|
49. |
Oh DY, Algazi A, Capdevila J, et al. Efficacy and safety of pembrolizumab monotherapy in patients with advanced thyroid cancer in the phase 2 KEYNOTE-158 study. Cancer, 2023, 129(8): 1195-1204.
|
50. |
Haugen B, French J, Worden FP, et al. Lenvatinib plus pembrolizumab combination therapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC): Results of a multicenter phase II international thyroid oncology group trial. J Clin Oncol, 2020, 38(15_suppl): 6512-6512.
|