- 1. Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China;
- 2. School of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China;
- 3. Department of Vascular Surgery, Affiliated Changhai Hospital, Naval Medical University, Shanghai 200433, P. R. China;
Citation: YANG Ruirui, CAO Youwen, LIANG Taiping, MA Jiangtao, ZHOU Jian, CHEN Jingquan. Review on research of new materials for anti-infective vascular endograft. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(2): 243-249. doi: 10.7507/1007-9424.202308011 Copy
1. | Chaufour X, Gaudric J, Goueffic Y, et al. A multicenter experience with infected abdominal aortic endograft explantation. J Vasc Surg, 2017, 65(2): 372-380. |
2. | Ducasse E, Calisti A, Speziale F, et al. Aortoiliac stent graft infection: current problems and management. Ann Vasc Surg, 2004, 18(5): 521-526. |
3. | Sorber R, Osgood MJ, Abularrage CJ, et al. Treatment of aortic graft infection in the endovascular era. Curr Infect Dis Rep, 2017, 19(11): 40. doi: 10.1007/s11908-017-0598-1. |
4. | Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med, 2019, 8(12): 2091. doi: 10.3390/jcm8122091. |
5. | 李芳, 吴可通, 赵珺, 等. 血管支架及其在动脉瘤治疗中的发展趋势. 中国组织工程研究, 2021, 25(34): 5561-5569. |
6. | Bangalore S, Kumar S, Fusaro M, et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation, 2012, 125(23): 2873-2891. |
7. | Fu J, Su Y, Qin YX, et al. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230: 119641. doi: 10.1016/j.biomaterials.2019.119641. |
8. | Liang Q, Ge S, Liu C, et al. The effect of composite PHB coating on the biological properties of a magnesium based alloy. J Biomater Appl, 2021, 35(10): 1264-1274. |
9. | Wlodarczak A, Montorsi P, Torzewski J, et al. One- and two-year clinical outcomes of treatment with resorbable magnesium scaffolds for coronary artery disease: the prospective, international, multicentre BIOSOLVE-Ⅳ registry. EuroIntervention, 2023, 19(3): 232-239. |
10. | Zhu J, Zhang X, Niu J, et al. Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery. Sci Rep, 2021, 11(1): 7330. doi: 10.1038/s41598-021-86803-0. |
11. | Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol, 2019, 37(4): 428-441. |
12. | Xiang Y, Mao C, Liu X, et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small, 2019, 15(22): e1900322. doi: 10.1002/smll.201900322. |
13. | Abdelkader DH, Negm WA, Elekhnawy E, et al. Zinc oxide nanoparticles as potential delivery carrier: green synthesis by aspergillus niger endophytic fungus, characterization, and in vitro/ in vivo antibacterial activity. Pharmaceuticals (Basel), 2022, 15(9): 1057. doi: 10.3390/ph15091057. |
14. | Shearier ER, Bowen PK, He W, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater Sci Eng, 2016, 2(4): 634-642. |
15. | Owhal A, Choudhary M, Pingale AD, et al. Non-cytotoxic zinc/f-graphene nanocomposite for tunable degradation and superior tribo-mechanical properties: synthesized via modified electro co-deposition route. Mater Today Commun, 2023, 34: 105112. |
16. | Reddy MSB, Ponnamma D, Choudhary R, et al. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7): 1105. doi: 10.3390/polym13071105. |
17. | Wahba MI. Enhancement of the mechanical properties of chitosan. J Biomater Sci Polym Ed, 2020, 31(3): 350-375. |
18. | Severino R, Vu KD, Donsì F, et al. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int J Food Microbiol, 2014, 191: 82-88. |
19. | Sun W, Zhang Y, Gregory DA, et al. Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Prog Nat Sci-Mater, 2020, 30(5): 686-696. |
20. | Song W, Muthana M, Mukherjee J, et al. Magnetic-silk core-shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater Sci Eng, 2017, 3(6): 1027-1038. |
21. | Zhang C, Zhang Y, Shao H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces, 2016, 8(5): 3349-3358. |
22. | Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 2016, 31: 1-16. |
23. | Zhao C, Deng B, Chen G, et al. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 2016, 9(4): 963-973. |
24. | Tsugawa T, Hatakeyama K, Matsuda J, et al. Synthesis of oxygen functional group-controlled monolayer graphene oxide. Bulletin of the Chemical Society of Japan, 2021, 94(9): 2195-2201. |
25. | Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7): 4317-4323. |
26. | Misra SK, Ostadhossein F, Babu R, et al. 3D-printed multidrug-eluting stent from graphene-nanoplatelet-doped biodegradable polymer composite. Adv Healthc Mater, 2017, 6(11). doi: 10.1002/adhm.201700008. |
27. | Pan C, Zhao Y, Yang Y, et al. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities. Colloids Surf B Biointerfaces, 2021, 199: 111541. doi: 10.1016/j.colsurfb.2020.111541. |
28. | Yang MC, Tsou HM, Hsiao YS, et al. Electrochemical polymerization of PEDOT-graphene oxide-heparin composite coating for anti-fouling and anti-clotting of cardiovascular stents. Polymers (Basel), 2019, 11(9): 1520. doi: 10.3390/polym11091520. |
29. | ElSawy AM, Attia NF, Mohamed HI, et al. Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Mater Sci Eng C Mater Biol Appl, 2019, 96: 708-715. |
30. | Wang Y, Zhang W, Zhang J, et al. Fabrication of a novel polymer-free nanostructured drug-eluting coating for cardiovascular stents. ACS Appl Mater Interfaces, 2013, 5(20): 10337-10345. |
31. | Chen R, Huang C, Ke Q, et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces, 2010, 79(2): 315-325. |
32. | Villani M, Consonni R, Canetti M, et al. Polyurethane-based composites: effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers (Basel), 2020, 12(2): 362. doi: 10.3390/polym12020362. |
33. | Wang HJ, Hao MF, Wang G, et al. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. Sci Total Environ, 2023, 873: 162438. doi: 10.1016/j.scitotenv.2023.162438. |
34. | Lu Z, Wu Y, Cong Z, et al. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater, 2021, 6(12): 4531-4541. |
35. | Wilson AC, Chou SF, Lozano R, et al. Thermal and physico-mechanical characterizations of thromboresistant polyurethane films. Bioengineering (Basel), 2019, 6(3): 69. doi: 10.3390/bioengineering6030069. |
36. | Hamad K, Kaseem M, Ayyoob M, et al. Polylactic acid blends: the future of green, light and tough. Prog Polym Sci, 2018, 85: 83-127. |
37. | Scaffaro R, Maio A, Sutera F, et al. Degradation and recycling of films based on biodegradable polymers: a short review. Polymers (Basel), 2019, 11(4): 651. doi: 10.3390/polym11040651. |
38. | Douglass M, Hopkins S, Pandey R, et al. S-nitrosoglutathione-based nitric oxide-releasing nanofibers exhibit dual antimicrobial and antithrombotic activity for biomedical applications. Macromol Biosci, 2021, 21(1): e2000248. doi: 10.1002/mabi.202000248. |
39. | 魏雨, 张景迅, 范娟娟, 等. 心血管支架表面改性及应用. 生物医学工程学杂志, 2016, 33(3): 593-597, 608. |
40. | Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: a review. Int J Biol Macromol, 2023, 240: 124407. doi: 10.1016/j.ijbiomac.2023.124407. |
41. | Li L, Wang X, Li D, et al. LBL deposition of chitosan/heparin bilayers for improving biological ability and reducing infection of nanofibers. Int J Biol Macromol, 2020, 154: 999-1006. |
42. | Katepetch C, Rujiravanit R, Tamura H. Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose, 2013, 20(3): 1275-1292. |
43. | Yang G, Wang C, Hong F, et al. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications. Carbohydr Polym, 2015, 115: 636-642. |
44. | Wang J, Wan Y, Huang Y. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnol, 2012, 6(2): 52-57. |
45. | Butchosa N, Brown C, Larsson PT, et al. Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem, 2013, 15(12): 3404–3413. |
46. | Mufty H, Van Den Eynde J, Meuris B, et al. Pre-clinical in vitro models of vascular graft coating in the prevention of vascular graft infection: a systematic review. Eur J Vasc Endovasc Surg, 2022, 63(1): 119-137. |
47. | Khan K, Javed S. Functionalization of inorganic nanoparticles to augment antimicrobial efficiency: a critical analysis. Curr Pharm Biotechnol, 2018, 19(7): 523-536. |
48. | Spina CJ, Notarandrea-Alfonzo J, Hay M, et al. Silver oxynitrate gel formulation for enhanced stability and antibiofilm efficacy. Int J Pharm, 2020, 580: 119197. doi: 10.1016/j.ijpharm.2020.119197. |
49. | Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3): 789-799. |
50. | Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346-2353. |
51. | Sohn EK, Johari SA, Kim TG, et al. Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int, 2015, 2015: 893049. doi: 10.1155/2015/893049. |
52. | Shahverdi AR, Minaeian S, Shahverdi HR, et al. Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: a novel biological approach. Process Biochemistry, 2007, 42(5): 919-923. |
53. | Senocak TC, Ezirmik KV, Cengiz S. The antibacterial properties and corrosion behavior of silver-doped niobium oxynitride coatings. Mater Today Commun, 2022, 32: 103975. doi: 10.1016/j.mtcomm.2022.103975. |
54. | Huang B, Jing F, Akhavan B, et al. Multifunctional Ti-xCu coatings for cardiovascular interfaces: control of microstructure and surface chemistry. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109969. doi: 10.1016/j.msec.2019.109969. |
55. | Ren Q, Qin L, Jing F, et al. Reactive magnetron co-sputtering of Ti-xCuO coatings: multifunctional interfaces for blood-contacting devices. Mater Sci Eng C Mater Biol Appl, 2020, 116: 111198. doi: 10.1016/j.msec.2020.111198. |
56. | He X, Zhang G, Zhang H, et al. Cu and Si co-doped microporous TiO2 coating for osseointegration by the coordinated stimulus action. Appl Surf Sci, 2020, 503: 144072. doi:10.1016/j.apsusc.2019.144072. |
57. | Zhang X, Li J, Wang X, et al. Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater Sci Eng C Mater Biol Appl, 2018, 82: 110-120. |
58. | Liu R, Tang Y, Liu H, et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities. J Mater Sci Technol, 2020, 47: 202-215. |
59. | Liu H, Zhang X, Jin S, et al. Effect of copper-doped titanium nitride coating on angiogenesis. Materials Letters, 2020, 269: 127634. doi: 10.1016/j.matlet.2020.127634. |
60. | Zhang Y, Cui S, Cao S, et al. To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure. Surf Coat Tech, 2022, 433: 128116. doi: 10.1016/j.surfcoat.2022.128116. |
61. | Zhao X, Cai D, Hu J, et al. A high-hydrophilic Cu2O-TiO2/Ti2O3/TiO coating on Ti-5Cu alloy: perfect antibacterial property and rapid endothelialization potential. Biomater Adv, 2022, 140: 213044. doi: 10.1016/j.bioadv.2022.213044. |
62. | Liu Y, Luo W, Yang H, et al. Stimulation of nitric oxide production contributes to the antiplatelet and antithrombotic effect of new peptide pENW (pGlu-Asn-Trp). Thromb Res, 2015, 136(2): 319-327. |
63. | Vahora H, Khan MA, Alalami U, et al. The potential role of nitric oxide in halting cancer progression through chemoprevention. J Cancer Prev, 2016, 21(1): 1-12. |
64. | Wang X, Jolliffe A, Carr B, et al. Nitric oxide-releasing semi-crystalline thermoplastic polymers: preparation, characterization and application to devise anti-inflammatory and bactericidal implants. Biomater Sci, 2018, 6(12): 3189-3201. |
65. | Friedman A, Blecher K, Sanchez D, et al. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence, 2011, 2(3): 217-221. |
66. | Wang L, Hou Z, Pranantyo D, et al. High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces. ACS Appl Mater Interfaces, 2021, 13(29): 33745-33755. |
67. | Aboshady I, Raad I, Vela D, et al. Prevention of perioperative vascular prosthetic infection with a novel triple antimicrobial-bonded arterial graft. J Vasc Surg, 2016, 64(6): 1805-1814. |
68. | Talapko J, Meštrović T, Juzbašić M, et al. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications. Antibiotics (Basel), 2022, 11(10): 1417. doi: 10.3390/antibiotics11101417. |
69. | Ma L, Xie X, Liu H, et al. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics, 2020, 10(3): 1373-1390. |
70. | Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev, 2014, 78: 28-45. |
71. | Gomes B, Augusto MT, Felício MR, et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv, 2018, 36(2): 415-429. |
72. | Rima M, Rima M, Fajloun Z, et al. Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics (Basel), 2021, 10(9): 1095. doi: 10.3390/antibiotics10091095. |
73. | Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther, 2007, 5(6): 951-959. |
74. | Kang X, Dong F, Shi C, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data, 2019, 6(1): 148. doi: 10.1038/s41597-019-0154-y. |
75. | Matthyssen T, Li W, Holden JA, et al. The potential of modified and multimeric antimicrobial peptide materials as superbug killers. Front Chem, 2022, 9: 795433. doi: 10.3389/fchem.2021.795433. |
76. | Oyama LB, Olleik H, Teixeira ACN, et al. In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. NPJ Biofilms Microbiomes, 2022, 8(1): 58. doi: 10.1038/s41522-022-00320-0. |
77. | Ramalho SR, de Cássia Orlandi Sardi J, Júnior EC, et al. The synthetic antimicrobial peptide IKR18 displays anti-infectious properties in Galleria mellonella in vivo model. Biochim Biophys Acta Gen Subj, 2022, 1866(12): 130244. doi: 10.1016/j.bbagen.2022.130244. |
78. | Alwine S, Chen C, Shen L, et al. Crosslinkable fluorophenoxy-substituted poly[bis(octafluoropentoxy) phosphazene] biomaterials with improved antimicrobial effect and hemocompatibility. J Biomed Mater Res B Appl Biomater, 2023, 111(8): 1533-1545. |
79. | Chen CQ, Li ZS, Li XZ, et al. Dual-functional antimicrobial coating based on the combination of zwitterionic and quaternary ammonium cation from rosin acid. Compos Part B-Eng, 2022, 232: 109623. doi: 10.1016/j.compositesb.2022.109623. |
80. | Bouloussa H, Saleh-mghir A, Valotteau C, et al. A graftable quaternary ammonium biocidal polymer reduces biofilm formation and ensures biocompatibility of medical devices.Adv Mater Interfaces, 2021, 8(5): 2001516. doi: 10.1002/admi.202001516. |
81. | Janković A, Eraković S, Ristoscu C, et al. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J Mater Sci Mater Med, 2015, 26(1): 5333. doi: 10.1007/s10856-014-5333-y. |
82. | Saratale RG, Saratale GD, Ghodake G, et al. Wheat straw extracted lignin in silver nanoparticles synthesis: expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol, 2019, 128: 391-400. |
83. | Yan Y, Zhang L, Zhao X, et al. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite. Int J Biol Macromol, 2022, 203: 49-57. |
84. | Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol, 2015, 33(11): 637-652. |
85. | Ajdnik U, Zemljič LF, Plohl O, et al. Bioactive functional nanolayers of chitosan-lysine surfactant with single- and mixed-protein-repellent and antibiofilm properties for medical implants. ACS Appl Mater Interfaces, 2021, 13(20): 23352-23368. |
- 1. Chaufour X, Gaudric J, Goueffic Y, et al. A multicenter experience with infected abdominal aortic endograft explantation. J Vasc Surg, 2017, 65(2): 372-380.
- 2. Ducasse E, Calisti A, Speziale F, et al. Aortoiliac stent graft infection: current problems and management. Ann Vasc Surg, 2004, 18(5): 521-526.
- 3. Sorber R, Osgood MJ, Abularrage CJ, et al. Treatment of aortic graft infection in the endovascular era. Curr Infect Dis Rep, 2017, 19(11): 40. doi: 10.1007/s11908-017-0598-1.
- 4. Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med, 2019, 8(12): 2091. doi: 10.3390/jcm8122091.
- 5. 李芳, 吴可通, 赵珺, 等. 血管支架及其在动脉瘤治疗中的发展趋势. 中国组织工程研究, 2021, 25(34): 5561-5569.
- 6. Bangalore S, Kumar S, Fusaro M, et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation, 2012, 125(23): 2873-2891.
- 7. Fu J, Su Y, Qin YX, et al. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230: 119641. doi: 10.1016/j.biomaterials.2019.119641.
- 8. Liang Q, Ge S, Liu C, et al. The effect of composite PHB coating on the biological properties of a magnesium based alloy. J Biomater Appl, 2021, 35(10): 1264-1274.
- 9. Wlodarczak A, Montorsi P, Torzewski J, et al. One- and two-year clinical outcomes of treatment with resorbable magnesium scaffolds for coronary artery disease: the prospective, international, multicentre BIOSOLVE-Ⅳ registry. EuroIntervention, 2023, 19(3): 232-239.
- 10. Zhu J, Zhang X, Niu J, et al. Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery. Sci Rep, 2021, 11(1): 7330. doi: 10.1038/s41598-021-86803-0.
- 11. Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol, 2019, 37(4): 428-441.
- 12. Xiang Y, Mao C, Liu X, et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small, 2019, 15(22): e1900322. doi: 10.1002/smll.201900322.
- 13. Abdelkader DH, Negm WA, Elekhnawy E, et al. Zinc oxide nanoparticles as potential delivery carrier: green synthesis by aspergillus niger endophytic fungus, characterization, and in vitro/ in vivo antibacterial activity. Pharmaceuticals (Basel), 2022, 15(9): 1057. doi: 10.3390/ph15091057.
- 14. Shearier ER, Bowen PK, He W, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater Sci Eng, 2016, 2(4): 634-642.
- 15. Owhal A, Choudhary M, Pingale AD, et al. Non-cytotoxic zinc/f-graphene nanocomposite for tunable degradation and superior tribo-mechanical properties: synthesized via modified electro co-deposition route. Mater Today Commun, 2023, 34: 105112.
- 16. Reddy MSB, Ponnamma D, Choudhary R, et al. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7): 1105. doi: 10.3390/polym13071105.
- 17. Wahba MI. Enhancement of the mechanical properties of chitosan. J Biomater Sci Polym Ed, 2020, 31(3): 350-375.
- 18. Severino R, Vu KD, Donsì F, et al. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int J Food Microbiol, 2014, 191: 82-88.
- 19. Sun W, Zhang Y, Gregory DA, et al. Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Prog Nat Sci-Mater, 2020, 30(5): 686-696.
- 20. Song W, Muthana M, Mukherjee J, et al. Magnetic-silk core-shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater Sci Eng, 2017, 3(6): 1027-1038.
- 21. Zhang C, Zhang Y, Shao H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces, 2016, 8(5): 3349-3358.
- 22. Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 2016, 31: 1-16.
- 23. Zhao C, Deng B, Chen G, et al. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 2016, 9(4): 963-973.
- 24. Tsugawa T, Hatakeyama K, Matsuda J, et al. Synthesis of oxygen functional group-controlled monolayer graphene oxide. Bulletin of the Chemical Society of Japan, 2021, 94(9): 2195-2201.
- 25. Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7): 4317-4323.
- 26. Misra SK, Ostadhossein F, Babu R, et al. 3D-printed multidrug-eluting stent from graphene-nanoplatelet-doped biodegradable polymer composite. Adv Healthc Mater, 2017, 6(11). doi: 10.1002/adhm.201700008.
- 27. Pan C, Zhao Y, Yang Y, et al. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities. Colloids Surf B Biointerfaces, 2021, 199: 111541. doi: 10.1016/j.colsurfb.2020.111541.
- 28. Yang MC, Tsou HM, Hsiao YS, et al. Electrochemical polymerization of PEDOT-graphene oxide-heparin composite coating for anti-fouling and anti-clotting of cardiovascular stents. Polymers (Basel), 2019, 11(9): 1520. doi: 10.3390/polym11091520.
- 29. ElSawy AM, Attia NF, Mohamed HI, et al. Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Mater Sci Eng C Mater Biol Appl, 2019, 96: 708-715.
- 30. Wang Y, Zhang W, Zhang J, et al. Fabrication of a novel polymer-free nanostructured drug-eluting coating for cardiovascular stents. ACS Appl Mater Interfaces, 2013, 5(20): 10337-10345.
- 31. Chen R, Huang C, Ke Q, et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces, 2010, 79(2): 315-325.
- 32. Villani M, Consonni R, Canetti M, et al. Polyurethane-based composites: effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers (Basel), 2020, 12(2): 362. doi: 10.3390/polym12020362.
- 33. Wang HJ, Hao MF, Wang G, et al. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. Sci Total Environ, 2023, 873: 162438. doi: 10.1016/j.scitotenv.2023.162438.
- 34. Lu Z, Wu Y, Cong Z, et al. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater, 2021, 6(12): 4531-4541.
- 35. Wilson AC, Chou SF, Lozano R, et al. Thermal and physico-mechanical characterizations of thromboresistant polyurethane films. Bioengineering (Basel), 2019, 6(3): 69. doi: 10.3390/bioengineering6030069.
- 36. Hamad K, Kaseem M, Ayyoob M, et al. Polylactic acid blends: the future of green, light and tough. Prog Polym Sci, 2018, 85: 83-127.
- 37. Scaffaro R, Maio A, Sutera F, et al. Degradation and recycling of films based on biodegradable polymers: a short review. Polymers (Basel), 2019, 11(4): 651. doi: 10.3390/polym11040651.
- 38. Douglass M, Hopkins S, Pandey R, et al. S-nitrosoglutathione-based nitric oxide-releasing nanofibers exhibit dual antimicrobial and antithrombotic activity for biomedical applications. Macromol Biosci, 2021, 21(1): e2000248. doi: 10.1002/mabi.202000248.
- 39. 魏雨, 张景迅, 范娟娟, 等. 心血管支架表面改性及应用. 生物医学工程学杂志, 2016, 33(3): 593-597, 608.
- 40. Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: a review. Int J Biol Macromol, 2023, 240: 124407. doi: 10.1016/j.ijbiomac.2023.124407.
- 41. Li L, Wang X, Li D, et al. LBL deposition of chitosan/heparin bilayers for improving biological ability and reducing infection of nanofibers. Int J Biol Macromol, 2020, 154: 999-1006.
- 42. Katepetch C, Rujiravanit R, Tamura H. Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose, 2013, 20(3): 1275-1292.
- 43. Yang G, Wang C, Hong F, et al. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications. Carbohydr Polym, 2015, 115: 636-642.
- 44. Wang J, Wan Y, Huang Y. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnol, 2012, 6(2): 52-57.
- 45. Butchosa N, Brown C, Larsson PT, et al. Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem, 2013, 15(12): 3404–3413.
- 46. Mufty H, Van Den Eynde J, Meuris B, et al. Pre-clinical in vitro models of vascular graft coating in the prevention of vascular graft infection: a systematic review. Eur J Vasc Endovasc Surg, 2022, 63(1): 119-137.
- 47. Khan K, Javed S. Functionalization of inorganic nanoparticles to augment antimicrobial efficiency: a critical analysis. Curr Pharm Biotechnol, 2018, 19(7): 523-536.
- 48. Spina CJ, Notarandrea-Alfonzo J, Hay M, et al. Silver oxynitrate gel formulation for enhanced stability and antibiofilm efficacy. Int J Pharm, 2020, 580: 119197. doi: 10.1016/j.ijpharm.2020.119197.
- 49. Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3): 789-799.
- 50. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346-2353.
- 51. Sohn EK, Johari SA, Kim TG, et al. Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int, 2015, 2015: 893049. doi: 10.1155/2015/893049.
- 52. Shahverdi AR, Minaeian S, Shahverdi HR, et al. Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: a novel biological approach. Process Biochemistry, 2007, 42(5): 919-923.
- 53. Senocak TC, Ezirmik KV, Cengiz S. The antibacterial properties and corrosion behavior of silver-doped niobium oxynitride coatings. Mater Today Commun, 2022, 32: 103975. doi: 10.1016/j.mtcomm.2022.103975.
- 54. Huang B, Jing F, Akhavan B, et al. Multifunctional Ti-xCu coatings for cardiovascular interfaces: control of microstructure and surface chemistry. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109969. doi: 10.1016/j.msec.2019.109969.
- 55. Ren Q, Qin L, Jing F, et al. Reactive magnetron co-sputtering of Ti-xCuO coatings: multifunctional interfaces for blood-contacting devices. Mater Sci Eng C Mater Biol Appl, 2020, 116: 111198. doi: 10.1016/j.msec.2020.111198.
- 56. He X, Zhang G, Zhang H, et al. Cu and Si co-doped microporous TiO2 coating for osseointegration by the coordinated stimulus action. Appl Surf Sci, 2020, 503: 144072. doi:10.1016/j.apsusc.2019.144072.
- 57. Zhang X, Li J, Wang X, et al. Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater Sci Eng C Mater Biol Appl, 2018, 82: 110-120.
- 58. Liu R, Tang Y, Liu H, et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities. J Mater Sci Technol, 2020, 47: 202-215.
- 59. Liu H, Zhang X, Jin S, et al. Effect of copper-doped titanium nitride coating on angiogenesis. Materials Letters, 2020, 269: 127634. doi: 10.1016/j.matlet.2020.127634.
- 60. Zhang Y, Cui S, Cao S, et al. To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure. Surf Coat Tech, 2022, 433: 128116. doi: 10.1016/j.surfcoat.2022.128116.
- 61. Zhao X, Cai D, Hu J, et al. A high-hydrophilic Cu2O-TiO2/Ti2O3/TiO coating on Ti-5Cu alloy: perfect antibacterial property and rapid endothelialization potential. Biomater Adv, 2022, 140: 213044. doi: 10.1016/j.bioadv.2022.213044.
- 62. Liu Y, Luo W, Yang H, et al. Stimulation of nitric oxide production contributes to the antiplatelet and antithrombotic effect of new peptide pENW (pGlu-Asn-Trp). Thromb Res, 2015, 136(2): 319-327.
- 63. Vahora H, Khan MA, Alalami U, et al. The potential role of nitric oxide in halting cancer progression through chemoprevention. J Cancer Prev, 2016, 21(1): 1-12.
- 64. Wang X, Jolliffe A, Carr B, et al. Nitric oxide-releasing semi-crystalline thermoplastic polymers: preparation, characterization and application to devise anti-inflammatory and bactericidal implants. Biomater Sci, 2018, 6(12): 3189-3201.
- 65. Friedman A, Blecher K, Sanchez D, et al. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence, 2011, 2(3): 217-221.
- 66. Wang L, Hou Z, Pranantyo D, et al. High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces. ACS Appl Mater Interfaces, 2021, 13(29): 33745-33755.
- 67. Aboshady I, Raad I, Vela D, et al. Prevention of perioperative vascular prosthetic infection with a novel triple antimicrobial-bonded arterial graft. J Vasc Surg, 2016, 64(6): 1805-1814.
- 68. Talapko J, Meštrović T, Juzbašić M, et al. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications. Antibiotics (Basel), 2022, 11(10): 1417. doi: 10.3390/antibiotics11101417.
- 69. Ma L, Xie X, Liu H, et al. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics, 2020, 10(3): 1373-1390.
- 70. Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev, 2014, 78: 28-45.
- 71. Gomes B, Augusto MT, Felício MR, et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv, 2018, 36(2): 415-429.
- 72. Rima M, Rima M, Fajloun Z, et al. Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics (Basel), 2021, 10(9): 1095. doi: 10.3390/antibiotics10091095.
- 73. Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther, 2007, 5(6): 951-959.
- 74. Kang X, Dong F, Shi C, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data, 2019, 6(1): 148. doi: 10.1038/s41597-019-0154-y.
- 75. Matthyssen T, Li W, Holden JA, et al. The potential of modified and multimeric antimicrobial peptide materials as superbug killers. Front Chem, 2022, 9: 795433. doi: 10.3389/fchem.2021.795433.
- 76. Oyama LB, Olleik H, Teixeira ACN, et al. In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. NPJ Biofilms Microbiomes, 2022, 8(1): 58. doi: 10.1038/s41522-022-00320-0.
- 77. Ramalho SR, de Cássia Orlandi Sardi J, Júnior EC, et al. The synthetic antimicrobial peptide IKR18 displays anti-infectious properties in Galleria mellonella in vivo model. Biochim Biophys Acta Gen Subj, 2022, 1866(12): 130244. doi: 10.1016/j.bbagen.2022.130244.
- 78. Alwine S, Chen C, Shen L, et al. Crosslinkable fluorophenoxy-substituted poly[bis(octafluoropentoxy) phosphazene] biomaterials with improved antimicrobial effect and hemocompatibility. J Biomed Mater Res B Appl Biomater, 2023, 111(8): 1533-1545.
- 79. Chen CQ, Li ZS, Li XZ, et al. Dual-functional antimicrobial coating based on the combination of zwitterionic and quaternary ammonium cation from rosin acid. Compos Part B-Eng, 2022, 232: 109623. doi: 10.1016/j.compositesb.2022.109623.
- 80. Bouloussa H, Saleh-mghir A, Valotteau C, et al. A graftable quaternary ammonium biocidal polymer reduces biofilm formation and ensures biocompatibility of medical devices.Adv Mater Interfaces, 2021, 8(5): 2001516. doi: 10.1002/admi.202001516.
- 81. Janković A, Eraković S, Ristoscu C, et al. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J Mater Sci Mater Med, 2015, 26(1): 5333. doi: 10.1007/s10856-014-5333-y.
- 82. Saratale RG, Saratale GD, Ghodake G, et al. Wheat straw extracted lignin in silver nanoparticles synthesis: expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol, 2019, 128: 391-400.
- 83. Yan Y, Zhang L, Zhao X, et al. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite. Int J Biol Macromol, 2022, 203: 49-57.
- 84. Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol, 2015, 33(11): 637-652.
- 85. Ajdnik U, Zemljič LF, Plohl O, et al. Bioactive functional nanolayers of chitosan-lysine surfactant with single- and mixed-protein-repellent and antibiofilm properties for medical implants. ACS Appl Mater Interfaces, 2021, 13(20): 23352-23368.