1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Kuo CL, Chou HY, Chiu YC, et al. Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett, 2020, 474: 138-150.
|
3. |
Li W, Wang H, Ma Z, et al. Multi-omics analysis of microen-vironment characteristics and immune escape mechanisms of hepatocellular carcinoma. Front Oncol, 2019, 9: 1019. doi: 10.3389/fonc.2019.01019.
|
4. |
Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer, 2021, 21(10): 669-680.
|
5. |
Yang X, Guo Y, Chen C, et al. Interaction between intestinal microbiota and tumour immunity in the tumour microen-vironment. Immunology, 2021, 164(3): 476-493.
|
6. |
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther, 2021, 221: 107753. doi: 10.1016/j.pharmthera.2020.107753.
|
7. |
Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science, 2020, 368(6494): 973-980.
|
8. |
Qiu Q, Lin Y, Ma Y, et al. Exploring the emerging role of the gut microbiota and tumor microenvironment in cancer immunotherapy. Front Immunol, 2021, 11: 612202. doi: 10.3389/fimmu.2020.612202.
|
9. |
Chen C, Wang Z, Ding Y, et al. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol, 2023, 14: 1133308. doi: 10.3389/fimmu.2023.1133308.
|
10. |
Doroshow DB, Bhalla S, Beasley MB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol, 2021, 18(6): 345-362.
|
11. |
Tang T, Huang X, Zhang G, et al. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther, 2021, 6(1): 72. doi: 10.1038/s41392-020-00449-4.
|
12. |
Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell, 2022, 185(20): 3789-3806.
|
13. |
Neuzillet C, Marchais M, Vacher S, et al. Prognostic value of intratumoral Fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients. Sci Rep, 2021, 11(1): 7870. doi: 10.1038/s41598-021-86816-9.
|
14. |
Kohi S, Macgregor-Das A, Dbouk M, et al. Alterations in the duodenal fluid microbiome of patients with pancreatic cancer. Clin Gastroenterol Hepatol, 2022, 20(2): e196-e227. doi: 10.1016/j.cgh.2020.11.006.
|
15. |
Xie Y, Xie F, Zhou X, et al. Microbiota in tumors: from understanding to application. Adv Sci (Weinh), 2022, 9(21): e2200470. doi: 10.1002/advs.202200470.
|
16. |
Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell, 2021, 39(5): 708-724.
|
17. |
Chen Y, Liu B, Wei Y, et al. Influence of gut and intratumoral microbiota on the immune microenvironment and anti-cancer therapy. Pharmacol Res, 2021, 174: 105966. doi: 10.1016/j.phrs.2021.105966.
|
18. |
Fu A, Yao B, Dong T, et al. Emerging roles of intratumor microbiota in cancer metastasis. Trends Cell Biol, 2023, 33(7): 583-593.
|
19. |
Sas Z, Cendrowicz E, Weinhäuser I, et al. Tumor microenvironment of hepatocellular carcinoma: challenges and opportunities for new treatment options. Int J Mol Sci, 2022, 23(7): 3778. doi: 10.3390/ijms23073778.
|
20. |
Yang Q, Guo N, Zhou Y, et al. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B, 2020, 10(11): 2156-2170.
|
21. |
Pavlović N, Calitz C, Thanapirom K, et al. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. Elife, 2020, 9: e55865. doi: 10.7554/eLife.55865.
|
22. |
Yuen VW, Wong CC. Hypoxia-inducible factors and innate immunity in liver cancer. J Clin Invest, 2020, 130(10): 5052-5062.
|
23. |
Kudo M. Scientific rationale for combined immunotherapy with PD-1/PD-L1 antibodies and VEGF inhibitors in advanced hepatocellular carcinoma. Cancers (Basel), 2020, 12(5): 1089. doi: 10.3390/cancers12051089.
|
24. |
Wu Z, Li S, Zhu X. The mechanism of stimulating and mobilizing the immune system enhancing the anti-tumor immunity. Front Immunol, 2021, 12: 682435. doi: 10.3389/fimmu.2021.682435.
|
25. |
El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7): 2557-2576.
|
26. |
Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol, 2020, 82: 103-126.
|
27. |
Gao X, Huang H, Wang Y, et al. Tumor immune microen-vironment characterization in hepatocellular carcinoma identifies four prognostic and immunotherapeutically relevant subclasses. Front Oncol, 2021, 10: 610513. doi: 10.3389/fonc.2020.610513.
|
28. |
Huang Y, Fan XG, Wang ZM, et al. Identification of helicobacter species in human liver samples from patients with primary hepatocellular carcinoma. J Clin Pathol, 2004, 57(12): 1273-1277.
|
29. |
Qu D, Wang Y, Xia Q, et al. Intratumoral microbiome of human primary liver cancer. Hepatol Commun, 2022, 6(7): 1741-1752.
|
30. |
Liu B, Zhou Z, Jin Y, et al. Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma. J Immunother Cancer, 2022, 10(1): e003069. doi: 10.1136/jitc-2021-003069.
|
31. |
Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature, 2020, 579(7800): 567-574.
|
32. |
Xue C, Chu Q, Zheng Q, et al. Current understanding of the intratumoral microbiome in various tumors. Cell Rep Med, 2023, 4(1): 100884. doi: 10.1016/j.xcrm.2022.100884.
|
33. |
Zhang YJ, Li S, Gan RY, et al. Impacts of gut bacteria on human health and diseases. Int J Mol Sci, 2015, 16(4): 7493-7519.
|
34. |
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol, 2021, 19(1): 55-71.
|
35. |
Ding RX, Goh WR, Wu RN, et al. Revisit gut microbiota and its impact on human health and disease. J Food Drug Anal, 2019, 27(3): 623-631.
|
36. |
Kuziel GA, Rakoff-Nahoum S. The gut microbiome. Curr Biol, 2022, 32(6): R257-R264. doi: 10.1016/j.cub.2022.02.023.
|
37. |
Zhou C, Zhao H, Xiao XY, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun, 2020, 107: 102360. doi: 10.1016/j.jaut.2019.102360.
|
38. |
Primec M, Klemenak M, Di Gioia D, et al. Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin Nutr, 2019, 38(3): 1373-1381.
|
39. |
Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, et al. Obesity impairs short-term and working memory through gut microbial metabolism of aromatic amino acids. Cell Metab, 2020, 32(4): 548-560.
|
40. |
Bashir M, Prietl B, Tauschmann M, et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr, 2016, 55(4): 1479-1489.
|
41. |
Cervantes-Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science, 2017, 357(6353): 806-810.
|
42. |
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett, 2020, 469: 456-467.
|
43. |
Ma W, Mao Q, Xia W, et al. Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol, 2019, 10: 1050. doi: 10.3389/fmicb.2019.01050.
|
44. |
Sepich-Poore GD, Zitvogel L, Straussman R, et al. The microbiome and human cancer. Science, 2021, 371(6536): eabc4552. doi: 10.1126/science.abc4552.
|
45. |
Yang W, Yu T, Huang X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun, 2020, 11(1): 4457. doi: 10.1038/s41467-020-18262-6.
|
46. |
Ogawa R, Yamamoto T, Hirai H, et al. Loss of SMAD4 promotes colorectal cancer progression by recruiting tumor-associated neutrophils via the CXCL1/8-CXCR2 axis. Clin Cancer Res, 2019, 25(9): 2887-2899.
|
47. |
Zhang Y, Guoqiang L, Sun M, et al. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med, 2020, 17(1): 32-43.
|
48. |
Schneider KM, Mohs A, Gui W, et al. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat Commun, 2022, 13(1): 3964. doi: 10.1038/s41467-022-31312-5.
|
49. |
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol, 2020, 72(3): 558-577.
|
50. |
Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411.
|
51. |
Shi L, Jin L, Huang W. Bile acids, intestinal barrier dysfunction, and related diseases. Cells, 2023, 12(14): 1888. doi: 10.3390/cells12141888.
|
52. |
Enright EF, Griffin BT, Gahan CGM, et al. Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism. Pharmacol Res, 2018, 133: 170-186.
|
53. |
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome, 2021, 9(1): 140. doi: 10.1186/s40168-021-01101-1.
|
54. |
Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med, 2015, 21(11): 702-714.
|
55. |
Lepercq P, Gérard P, Béguet F, et al. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces. FEMS Microbiol Lett, 2004, 235(1): 65-72.
|
56. |
Sannasiddappa TH, Lund PA, Clarke SR. In vitro antibacterial activity of unconjugated and conjugated bile salts on staphylococcus aureus. Front Microbiol, 2017, 8: 1581. doi: 10.3389/fmicb.2017.01581.
|
57. |
Grüner N, Mattner J. Bile acids and microbiota: multifaceted and versatile regulators of the liver-gut axis. Int J Mol Sci, 2021, 22(3): 1397. doi: 10.3390/ijms22031397.
|
58. |
Wu L, Feng J, Li J, et al. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed Pharmacother, 2021, 133: 111036. doi: 10.1016/j.biopha.2020.111036.
|
59. |
Schwabe RF, Greten TF. Gut microbiome in HCC—Mechanisms, diagnosis and therapy. J Hepatol, 2020, 72(2): 230-238.
|
60. |
Rattan P, Minacapelli CD, Rustgi V. The microbiome and hepatocellular carcinoma. Liver Transpl, 2020, 26(10): 1316-1327.
|
61. |
Levy M, Kolodziejczyk AA, Thaiss CA, et al. Dysbiosis and the immune system. Nat Rev Immunol, 2017, 17(4): 219-232.
|
62. |
Guo X, Okpara ES, Hu W, et al. Interactive relationships between intestinal flora and bile acids. Int J Mol Sci, 2022, 23(15): 8343. doi: 10.3390/ijms23158343.
|
63. |
Temraz S, Nassar F, Kreidieh F, et al. Hepatocellular carcinoma immunotherapy and the potential influence of gut microbiome. Int J Mol Sci, 2021, 22(15): 7800. doi: 10.3390/ijms22157800.
|
64. |
Chen W, Wen L, Bao Y, et al. Gut flora disequilibrium promotes the initiation of liver cancer by modulating tryptophan metabolism and up-regulating SREBP2. Proc Natl Acad Sci U S A, 2022, 119(52): e2203894119. doi: 10.1073/pnas.2203894119.
|
65. |
Huang H, Ren Z, Gao X, et al. Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med, 2020, 12(1): 102. doi: 10.1186/s13073-020-00796-5.
|
66. |
Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 2019, 68(6): 1014-1023.
|
67. |
Yang J, He Q, Lu F, et al. A distinct microbiota signature precedes the clinical diagnosis of hepatocellular carcinoma. Gut Microbes, 2023, 15(1): 2201159. doi: 10.1080/19490976.2023.2201159.
|
68. |
Qiao Y, Wang J, Karagoz E, et al. Axis inhibition protein 1 (Axin1) deletion-induced hepatocarcinogenesis requires intact β-Catenin but not notch cascade in mice. Hepatology, 2019, 70(6): 2003-2017.
|
69. |
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 2019, 570(7762): 462-467.
|
70. |
Li Z, Zhang Y, Hong W, et al. Gut microbiota modulate radiotherapy-associated antitumor immune responses against hepatocellular carcinoma via STING signaling. Gut Microbes, 2022, 14(1): 2119055. doi: 10.1080/19490976.2022.2119055.
|
71. |
皮丽娜, 候艳莹, 张维. 肠道菌群失调、炎症因子变化、维生素缺乏与肝癌患者根治术后复发的关系. 现代肿瘤医学, 2019, 27(17): 3078-3081.
|
72. |
Garrett WS. Cancer and the microbiota. Science, 2015, 348(6230): 80-86.
|