1. |
Goikoetxea-Usandizaga N, Serrano-Maciá M, Delgado TC, et al. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals. Hepatology, 2022, 75(3): 550-566.
|
2. |
VanHorn S, Morris SA. Next-generation lineage tracing and fate mapping to interrogate development. Dev Cell, 2021, 56(1): 7-21.
|
3. |
Conklin EG. The mutation theory from the standpoint of cytology. Science, 1905, 21(536): 525-529.
|
4. |
Cheng H. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. Ⅳ. Paneth cells. Am J Anat, 1974, 141(4): 521-535.
|
5. |
Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol, 2008, 199(6): 660. e1-660. e5. doi: 10.1016/j.ajog.2008.07.023.
|
6. |
Simeonov KP, Byrns CN, Clark ML, et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell, 2021, 39(8): 1150-1162.
|
7. |
Wang YG, Yuan VL, Liao XH. Genetic lineage tracing in skin reveals predominant expression of HEY2 in dermal papilla during telogen and that HEY2+ cells contribute to the regeneration of dermal cells during wound healing. Exp Dermatol, 2023, 32(12): 2176-2179.
|
8. |
Root SH, Vrhovac Madunic I, Kronenberg MS, et al. Lineage tracing of RGS5-CreER-labeled cells in long bones during homeostasis and injury. Stem Cells, 2023, 41(5): 493-504.
|
9. |
Kim JS, Kolesnikov M, Peled-Hajaj S, et al. A binary Cre transgenic approach dissects microglia and CNS border-associated macrophages. Immunity, 2021, 54(1): 176-190.
|
10. |
Wang L, Liu Y, Dai Y, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut, 2023, 72(5): 958-971.
|
11. |
Sankaran VG, Weissman JS, Zon LI. Cellular barcoding to decipher clonal dynamics in disease. Science, 2022, 378(6616): eabm5874. doi: 10.1126/science.abm5874.
|
12. |
Tang L. Multiomics sequencing goes spatial. Nat Methods, 2021, 18(1): 31. doi: 10.1038/s41592-020-01043-w.
|
13. |
Casadei L, Sarchet P, de Faria FCC, et al. In situ hybridization to detect DNA amplification in extracellular vesicles. J Extracell Vesicles, 2022, 11(9): e12251. doi: 10.1002/jev2.12251.
|
14. |
Winkler M, Staniczek T, Kürschner SW, et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J Hepatol, 2021, 74(2): 380-393.
|
15. |
Funk L, Su KC, Ly J, et al. The phenotypic landscape of essential human genes. Cell, 2022, 185(24): 4634-4653.
|
16. |
Han X, Zhang Z, He L, et al. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell, 2021, 28(6): 1160-1176.
|
17. |
Bittel M, Reichert P, Sarfati I, et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. J Extracell Vesicles, 2021, 10(12): e12159. doi: 10.1002/jev2.12159.
|
18. |
Wu X, Liu H, Brooks A, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes. Circ Res, 2022, 131(11): 926-943.
|
19. |
Liu B, Jing Z, Zhang X, et al. Large-scale multiplexed mosaic CRISPR perturbation in the whole organism. Cell, 2022, 185(16): 3008-3024.
|
20. |
Chan LY, Chang CC, Lai PL, et al. Cre/LoxP genetic recombination sustains cartilage anabolic factor expression in hyaluronan encapsulated MSCs alleviates intervertebral Disc degeneration. Biomedicines, 2022, 10(3): 555. doi: 10.3390/biomedicines10030555.
|
21. |
Bao Y, Kim D, Cho YH, et al. Cre-loxP system-based mouse model for investigating Graves’ disease and associated orbitopathy. Thyroid, 2023, 33(11): 1358-1367.
|
22. |
Chen MY, Zhao FL, Chu WL, et al. A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomed Pharmacother, 2023, 165: 115045. doi: 10.1016/j.biopha.2023.115045.
|
23. |
Wang JF, Wang YP, Xie J, et al. Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of sepsis. Blood, 2021, 138(9): 806-810.
|
24. |
Liu K, Liu J, Zou B, et al. Trypsin-mediated sensitization to ferroptosis increases the severity of pancreatitis in mice. Cell Mol Gastroenterol Hepatol, 2022, 13(2): 483-500.
|
25. |
Chen Q, Weng K, Lin M, et al. SOX9 modulates the transformation of gastric stem cells through biased symmetric cell division. Gastroenterology, 2023, 164(7): 1119-1136.
|
26. |
Takao T, Hiraoka Y, Kawabe K, et al. Establishment of a tTA-dependent photoactivatable Cre recombinase knock-in mouse model for optogenetic genome engineering. Biochem Biophys Res Commun, 2020, 526(1): 213-217.
|
27. |
Weng W, Liu X, Lui KO, et al. Harnessing orthogonal recombinases to decipher cell fate with enhanced precision. Trends Cell Biol, 2022, 32(4): 324-337.
|
28. |
Pu W, He L, Han X, et al. Genetic targeting of organ-specific blood vessels. Circ Res, 2018, 123(1): 86-99.
|
29. |
Kantak M, Batra P, Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int J Biol Macromol, 2023, 230: 123262. doi: 10.1016/j.ijbiomac.2023.123262.
|
30. |
Xie L, Liu H, You Z, et al. Comprehensive spatiotemporal mapping of single-cell lineages in developing mouse brain by CRISPR-based barcoding. Nat Methods, 2023, 20(8): 1244-1255.
|
31. |
Ben-Moshe S, Veg T, Manco R, et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell, 2022, 29(6): 973-989. e10. doi: 10.1016/j.stem.2022.04.008.
|
32. |
Qing J, Ren Y, Zhang Y, et al. Dopamine receptor D2 antagonism normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis. J Hepatol, 2022, 76(2): 394-406.
|
33. |
Fu X, He Q, Tao Y, et al. Recent advances in tissue stem cells. Sci China Life Sci, 2021, 64(12): 1998-2029.
|
34. |
Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev, 2003, 120(1): 117-130.
|
35. |
Ock SA, Kim SY, Ju WS, et al. Adipose tissue-derived mesenchymal stem cells extend the lifespan and enhance liver function in hepatocyte organoids. Int J Mol Sci, 2023, 24(20): 15429. doi: 10.3390/ijms242015429.
|
36. |
Hou X, Liu W, Yang X, et al. Extracellular microparticles derived from hepatic progenitor cells deliver a death signal to hepatoma-initiating cells. J Nanobiotechnology, 2022, 20(1): 79. doi: 10.1186/s12951-022-01280-5.
|
37. |
He Y, Pei Y, Liu K, et al. GITR/GITRL reverse signalling modulates the proliferation of hepatic progenitor cells by recruiting ANXA2 to phosphorylate ERK1/2 and Akt. Cell Death Dis, 2022, 13(4): 297. doi: 10.1038/s41419-022-04759-z.
|
38. |
Lu WY, Bird TG, Boulter L, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol, 2015, 17(8): 971-983.
|
39. |
Aizarani N, Saviano A, Sagar None, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature, 2019, 572(7768): 199-204.
|
40. |
Furuyama K, Kawaguchi Y, Akiyama H, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet, 2011, 43(1): 34-41.
|
41. |
Tarlow BD, Finegold MJ, Grompe M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology, 2014, 60(1): 278-289.
|
42. |
Qin D, Wang R, Ji J, et al. Hepatocyte-specific Sox9 knockout ameliorates acute liver injury by suppressing SHP signaling and improving mitochondrial function. Cell Biosci, 2023, 13(1): 159. doi: 10.1186/s13578-023-01104-5.
|
43. |
Lin T, Feng R, Liebe R, et al. Liver progenitor cells in massive hepatic necrosis-how can a patient survive acute liver failure?. Biomolecules, 2022, 12(1): 66. doi: 10.3390/biom12010066.
|
44. |
Martini T, Naef F, Tchorz JS. Spatiotemporal metabolic liver zonation and consequences on pathophysiology. Annu Rev Pathol, 2023, 18: 439-466.
|
45. |
Huang R, Zhang X, Gracia-Sancho J, et al. Liver regeneration: cellular origin and molecular mechanisms. Liver Int, 2022, 42(7): 1486-1495.
|
46. |
Goel C, Monga SP, Nejak-Bowen K. Role and regulation of Wnt/β-catenin in hepatic perivenous zonation and physiological homeostasis. Am J Pathol, 2022, 192(1): 4-17.
|
47. |
Hu S, Liu S, Bian Y, et al. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med, 2022, 3(10): 100754. doi: 10.1016/j.xcrm.2022.100754.
|
48. |
Xu C, Xu Z, Zhang Y, et al. β-catenin signaling in hepatocellular carcinoma. J Clin Invest, 2022, 132(4): e154515. doi: 10.1172/JCI154515.
|
49. |
Wang B, Zhao L, Fish M, et al. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature, 2015, 524(7564): 180-185.
|
50. |
Sun T, Pikiolek M, Orsini V, et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell, 2020, 26(1): 97-107.
|
51. |
Font-Burgada J, Shalapour S, Ramaswamy S, et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell, 2015, 162(4): 766-779.
|
52. |
Pu W, Zhang H, Huang X, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun, 2016, 7: 13369. doi: 10.1038/ncomms13369.
|
53. |
Lin S, Nascimento EM, Gajera CR, et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature, 2018, 556(7700): 244-248.
|
54. |
He L, Pu W, Liu X, et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science, 2021, 371(6532): eabc4346. doi: 10.1126/science.abc4346.
|
55. |
Wei Y, Wang YG, Jia Y, et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science, 2021, 371(6532): eabb1625. doi: 10.1126/science.abb1625.
|
56. |
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 40-55.
|
57. |
Chen F, Jimenez RJ, Sharma K, et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell, 2020, 26(1): 27-33.
|
58. |
Yagi S, Hirata M, Miyachi Y, et al. Liver regeneration after hepatectomy and partial liver transplantation. Int J Mol Sci, 2020, 21(21): 8414. doi: 10.3390/ijms21218414.
|
59. |
Wen Y, Emontzpohl C, Xu L, et al. Interleukin-33 facilitates liver regeneration through serotonin-involved gut-liver axis. Hepatology, 2023, 77(5): 1580-1592.
|
60. |
Lin YH, Zhang S, Zhu M, et al. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer hepatocellular carcinomas following chronic liver injury. Gastroenterology, 2020, 158(6): 1698-1712.
|
61. |
Matsumoto T, Wakefield L, Tarlow BD, et al. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell, 2020, 26(1): 34-47.
|
62. |
Rodrigo-Torres D, Affò S, Coll M, et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology, 2014, 60(4): 1367-1377.
|
63. |
Gadd VL, Aleksieva N, Forbes SJ. Epithelial plasticity during liver injury and regeneration. Cell Stem Cell, 2020, 27(4): 557-573.
|
64. |
Choi TY, Ninov N, Stainier DY, et al. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology, 2014, 146(3): 776-788.
|
65. |
Pu W, Zhu H, Zhang M, et al. Bipotent transitional liver progenitor cells contribute to liver regeneration. Nat Genet, 2023, 55(4): 651-664.
|
66. |
Ho DWH, Chan LK, Chiu YT, et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut, 2017, 66(8): 1496-1506.
|
67. |
Jiang DK, Deng JE, Dong CZ, et al. Knowledge-based analyses reveal new candidate genes associated with risk of hepatitis B virus related hepatocellular carcinoma. BMC Cancer, 2020, 20(1): 403. doi: 10.1186/s12885-020-06842-0.
|
68. |
Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell, 2019, 179(2): 561-577.
|
69. |
Ohrnberger S, Thavamani A, Braeuning A, et al. Dysregulated serum response factor triggers formation of hepatocellular carcinoma. Hepatology, 2015, 61(3): 979-989.
|