1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Olsen TK, Baryawno N. Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol, 2018, 122(1): e57. doi: 10.1002/cpmb.57.
|
3. |
Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol, 2018, 14(8): 479-492.
|
4. |
Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol, 2021, 14(1): 91. doi: 10.1186/s13045-021-01105-2.
|
5. |
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-trans-criptome analysis of a single cell. Nat Methods, 2009, 6(5): 377-382.
|
6. |
Wang X, He Y, Zhang Q, et al. Direct comparative analyses of 10×Genomics chromium and Smart-seq2. Genomics Proteomics Bioinformatics, 2021, 19(2): 253-266.
|
7. |
Wang S, Sun ST, Zhang XY, et al. The evolution of single-cell RNA sequencing technology and application: progress and perspectives. Int J Mol Sci, 2023, 24(3): 2943. doi: 10.3390/ijms24032943.
|
8. |
Wang W, Zhong Y, Zhuang Z, et al. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med, 2021, 11(1): e253. doi: 10.1002/ctm2.253.
|
9. |
See P, Lum J, Chen J, et al. A single-cell sequencing guide for immunologists. Front Immunol, 2018, 9: 2425. doi: 10.3389/fimmu.2018.02425.
|
10. |
Williams CG, Lee HJ, Asatsuma T, et al. An introduction to spatial transcriptomics for biomedical research. Genome Med, 2022, 14(1): 68. doi: 10.1186/s13073-022-01075-1.
|
11. |
Zhang Y, Wang D, Peng M, et al. Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res, 2021, 40(1): 81. doi: 10.1186/s13046-021-01874-1.
|
12. |
Jovic D, Liang X, Zeng H, et al. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med, 2022, 12(3): e694. doi: 10.1002/ctm2.694.
|
13. |
Kaushik AM, Hsieh K, Wang TH. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(6): e1522. doi: 10.1002/wnan.1522.
|
14. |
Lindsay CR, Blackhall FH, Carmel A, et al. EPAC-lung: pooled analysis of circulating tumour cells in advanced non-small cell lung cancer. Eur J Cancer, 2019, 117: 60-68.
|
15. |
李贱成, 徐克前. 单细胞转录组测序技术及其应用. 生命的化学, 2020, 40(8): 1208-1219.
|
16. |
Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun, 2017, 8: 14049. doi: 10.1038/ncomms14049.
|
17. |
Balzer MS, Ma Z, Zhou J, et al. How to get started with single cell RNA sequencing data analysis. J Am Soc Nephrol, 2021, 32(6): 1279-1292.
|
18. |
Griffiths JA, Richard AC, Bach K, et al. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat Commun, 2018, 9(1): 2667. doi: 10.1038/s41467-018-05083-x.
|
19. |
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol, 2019, 20(1): 296. doi: 10.1186/s13059-019-1874-1.
|
20. |
Bacher R, Chu LF, Leng N, et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods, 2017, 14(6): 584-586.
|
21. |
Tang W, Bertaux F, Thomas P, et al. BayNorm: bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics, 2020, 36(4): 1174-1181.
|
22. |
Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat Biotechnol, 2019, 37(6): 685-691.
|
23. |
Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods, 2019, 16(12): 1289-1296.
|
24. |
Zhou Y, Sharpee TO. Using global t-SNE to preserve intercluster data structure. Neural Comput, 2022, 34(8): 1637-1651.
|
25. |
Armstrong G, Martino C, Rahman G, et al. Uniform manifold approximation and projection (UMAP) reveals composite patterns and resolves visualization artifacts in microbiome data. mSystems, 2021, 6(5): e0069121. doi: 10.1128/mSystems.00691-21.
|
26. |
Coifman RR, Lafon S, Lee AB, et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci USA, 2005, 102(21): 7426-7431.
|
27. |
李涛, 张泽坤, 顾连峰. 高通量单细胞转录组数据分析方法的研究进展. 福建农林大学学报(自然科学版), 2022, 51(2): 145-154.
|
28. |
Su M, Pan T, Chen QZ, et al. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil Med Res, 2022, 9(1): 68. doi: 10.1186/s40779-022-00434-8.
|
29. |
Welch DR. Tumor heterogeneity—A‘Contemporary Concept’ founded on historical insights and predictions. Cancer Res, 2016, 76(1): 4-6.
|
30. |
Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol, 2023, 41(10): 1809-1815.
|
31. |
Karaayvaz M, Cristea S, Gillespie SM, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun, 2018, 9(1): 3588. doi: 10.1038/s41467-018-06052-0.
|
32. |
Hida K, Maishi N, Annan DA, et al. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci, 2018, 19(5): 1272. doi: 10.3390/ijms19051272.
|
33. |
Zhang J, Lu T, Lu S, et al. Single-cell analysis of multiple cancer types reveals differences in endothelial cells between tumors and normal tissues. Comput Struct Biotechnol J, 2022, 21: 665-676.
|
34. |
El-Deiry WS, Goldberg RM, Lenz HJ, et al. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA Cancer J Clin, 2019, 69(4): 305-343.
|
35. |
Hamilton E, Shastry M, Shiller SM, et al. Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev, 2021, 100: 102286. doi: 10.1016/j.ctrv.2021.102286.
|
36. |
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版). 中国癌症杂志, 2021, 31(10): 954-1040.
|
37. |
Chung W, Eum HH, Lee HO, et al. Single-cell RNA-seq enables com-prehensive tumour and immune cell profiling in primary breast cancer. Nat Commun, 2017, 8: 15081. doi: 10.1038/ncomms15081.
|
38. |
Wang Q, Guldner IH, Golomb SM, et al. Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor-resistant HER2-positive breast cancer. Nat Commun, 2019, 10(1): 3817. doi: 10.1038/s41467-019-11729-1.
|
39. |
Jang BS, Han W, Kim IA. Tumor mutation burden, immune checkpoint crosstalk and radiosensitivity in single-cell RNA sequencing data of breast cancer. Radiother Oncol, 2020, 142: 202-209.
|
40. |
Zhou S, Huang YE, Liu H, et al. Single-cell RNA-seq dissects the intra-tumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Mol Ther Nucleic Acids, 2021, 23: 682-690.
|
41. |
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer, 2021, 20(1): 131. doi: 10.1186/s12943-021-01428-1.
|
42. |
Ermakov MS, Nushtaeva AA, Richter VA, et al. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurnal Genet Selektsii, 2022, 26(1): 14-21.
|
43. |
Xiang X, Niu YR, Wang ZH, et al. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev, 2022, 67: 35-48.
|
44. |
Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell, 2017, 171(7): 1611-1624.
|
45. |
Valdés-Mora F, Salomon R, Gloss BS, et al. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep, 2021, 35(2): 108945. doi: 10.1016/j.celrep.2021.108945.
|
46. |
Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov, 2020, 10(9): 1330-1351.
|
47. |
Cords L, Tietscher S, Anzeneder T, et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat Commun, 2023, 14(1): 4294. doi: 10.1038/s41467-023-39762-1.
|
48. |
Li C, Yang L, Zhang Y, et al. Integrating single-cell and bulk transcriptomic analyses to develop a cancer-associated fibroblast-derived biomarker for predicting prognosis and therapeutic response in breast cancer. Front Immunol, 2024, 14: 1307588. doi: 10.3389/fimmu.2023.1307588.
|
49. |
Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer, 2021, 21(6): 345-359.
|
50. |
Xu Q, Chen S, Hu Y, et al. Landscape of immune microenviron-ment under immune cell infiltration pattern in breast cancer. Front Immunol, 2021, 12: 711433. doi: 10.3389/fimmu.2021.711433.
|
51. |
Pal B, Chen Y, Vaillant F, et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J, 2021, 40(11): e107333. doi: 10.15252/embj.2020107333.
|
52. |
Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 2018, 174(5): 1293-1308.
|
53. |
Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med, 2018, 24(7): 986-993.
|
54. |
Guo S, Liu X, Zhang J, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels T cell-related prognostic risk model and tumor immune microenvironment modulation in triple-negative breast cancer. Comput Biol Med, 2023, 161: 107066. doi: 10.1016/j.compbiomed.2023.107066.
|
55. |
Lu Y, Zhao Q, Liao JY, et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell, 2020, 180(6): 1081-1097.
|
56. |
Hu Q, Hong Y, Qi P, et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat Commun, 2021, 12(1): 2186. doi: 10.1038/s41467-021-22300-2.
|
57. |
Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity, 2019, 50(5): 1317-1334.
|
58. |
Bao X, Shi R, Zhao T, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol Immunother, 2021, 70(1): 189-202.
|
59. |
Molgora M, Esaulova E, Vermi W, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell, 2020, 182(4): 886-900.
|
60. |
Kersten K, Hu KH, Combes AJ, et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell, 2022, 40(6): 624-638.
|
61. |
Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet, 2021, 53(9): 1334-1347.
|
62. |
Huang H, Zhang H, Onuma AE, et al. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment. Adv Exp Med Biol, 2020, 1263: 13-23.
|
63. |
Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer, 2020, 20(9): 485-503.
|
64. |
SenGupta S, Hein LE, Xu Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol, 2021, 12: 659996. doi: 10.3389/fimmu.2021.659996.
|
65. |
Amer HT, Stein U, El Tayebi HM. The monocyte, a maestro in the tumor microenvironment (TME) of breast cancer. Cancers (Basel), 2022, 14(21): 5460. doi: 10.3390/cancers14215460.
|