- 1. The First Clinical College of Shanxi Medical University, Taiyuan 030001, P. R. China;
- 2. Department of Breast Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, P. R. China;
Citation: ZHANG Guangwen, CHENG Chen, WANG Shiming. Single-cell RNA sequencing and its research progress in tumor microenvironment of breast cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(4): 495-501. doi: 10.7507/1007-9424.202311050 Copy
1. | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249. |
2. | Olsen TK, Baryawno N. Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol, 2018, 122(1): e57. doi: 10.1002/cpmb.57. |
3. | Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol, 2018, 14(8): 479-492. |
4. | Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol, 2021, 14(1): 91. doi: 10.1186/s13045-021-01105-2. |
5. | Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-trans-criptome analysis of a single cell. Nat Methods, 2009, 6(5): 377-382. |
6. | Wang X, He Y, Zhang Q, et al. Direct comparative analyses of 10×Genomics chromium and Smart-seq2. Genomics Proteomics Bioinformatics, 2021, 19(2): 253-266. |
7. | Wang S, Sun ST, Zhang XY, et al. The evolution of single-cell RNA sequencing technology and application: progress and perspectives. Int J Mol Sci, 2023, 24(3): 2943. doi: 10.3390/ijms24032943. |
8. | Wang W, Zhong Y, Zhuang Z, et al. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med, 2021, 11(1): e253. doi: 10.1002/ctm2.253. |
9. | See P, Lum J, Chen J, et al. A single-cell sequencing guide for immunologists. Front Immunol, 2018, 9: 2425. doi: 10.3389/fimmu.2018.02425. |
10. | Williams CG, Lee HJ, Asatsuma T, et al. An introduction to spatial transcriptomics for biomedical research. Genome Med, 2022, 14(1): 68. doi: 10.1186/s13073-022-01075-1. |
11. | Zhang Y, Wang D, Peng M, et al. Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res, 2021, 40(1): 81. doi: 10.1186/s13046-021-01874-1. |
12. | Jovic D, Liang X, Zeng H, et al. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med, 2022, 12(3): e694. doi: 10.1002/ctm2.694. |
13. | Kaushik AM, Hsieh K, Wang TH. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(6): e1522. doi: 10.1002/wnan.1522. |
14. | Lindsay CR, Blackhall FH, Carmel A, et al. EPAC-lung: pooled analysis of circulating tumour cells in advanced non-small cell lung cancer. Eur J Cancer, 2019, 117: 60-68. |
15. | 李贱成, 徐克前. 单细胞转录组测序技术及其应用. 生命的化学, 2020, 40(8): 1208-1219. |
16. | Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun, 2017, 8: 14049. doi: 10.1038/ncomms14049. |
17. | Balzer MS, Ma Z, Zhou J, et al. How to get started with single cell RNA sequencing data analysis. J Am Soc Nephrol, 2021, 32(6): 1279-1292. |
18. | Griffiths JA, Richard AC, Bach K, et al. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat Commun, 2018, 9(1): 2667. doi: 10.1038/s41467-018-05083-x. |
19. | Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol, 2019, 20(1): 296. doi: 10.1186/s13059-019-1874-1. |
20. | Bacher R, Chu LF, Leng N, et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods, 2017, 14(6): 584-586. |
21. | Tang W, Bertaux F, Thomas P, et al. BayNorm: bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics, 2020, 36(4): 1174-1181. |
22. | Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat Biotechnol, 2019, 37(6): 685-691. |
23. | Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods, 2019, 16(12): 1289-1296. |
24. | Zhou Y, Sharpee TO. Using global t-SNE to preserve intercluster data structure. Neural Comput, 2022, 34(8): 1637-1651. |
25. | Armstrong G, Martino C, Rahman G, et al. Uniform manifold approximation and projection (UMAP) reveals composite patterns and resolves visualization artifacts in microbiome data. mSystems, 2021, 6(5): e0069121. doi: 10.1128/mSystems.00691-21. |
26. | Coifman RR, Lafon S, Lee AB, et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci USA, 2005, 102(21): 7426-7431. |
27. | 李涛, 张泽坤, 顾连峰. 高通量单细胞转录组数据分析方法的研究进展. 福建农林大学学报(自然科学版), 2022, 51(2): 145-154. |
28. | Su M, Pan T, Chen QZ, et al. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil Med Res, 2022, 9(1): 68. doi: 10.1186/s40779-022-00434-8. |
29. | Welch DR. Tumor heterogeneity—A‘Contemporary Concept’ founded on historical insights and predictions. Cancer Res, 2016, 76(1): 4-6. |
30. | Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol, 2023, 41(10): 1809-1815. |
31. | Karaayvaz M, Cristea S, Gillespie SM, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun, 2018, 9(1): 3588. doi: 10.1038/s41467-018-06052-0. |
32. | Hida K, Maishi N, Annan DA, et al. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci, 2018, 19(5): 1272. doi: 10.3390/ijms19051272. |
33. | Zhang J, Lu T, Lu S, et al. Single-cell analysis of multiple cancer types reveals differences in endothelial cells between tumors and normal tissues. Comput Struct Biotechnol J, 2022, 21: 665-676. |
34. | El-Deiry WS, Goldberg RM, Lenz HJ, et al. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA Cancer J Clin, 2019, 69(4): 305-343. |
35. | Hamilton E, Shastry M, Shiller SM, et al. Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev, 2021, 100: 102286. doi: 10.1016/j.ctrv.2021.102286. |
36. | 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版). 中国癌症杂志, 2021, 31(10): 954-1040. |
37. | Chung W, Eum HH, Lee HO, et al. Single-cell RNA-seq enables com-prehensive tumour and immune cell profiling in primary breast cancer. Nat Commun, 2017, 8: 15081. doi: 10.1038/ncomms15081. |
38. | Wang Q, Guldner IH, Golomb SM, et al. Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor-resistant HER2-positive breast cancer. Nat Commun, 2019, 10(1): 3817. doi: 10.1038/s41467-019-11729-1. |
39. | Jang BS, Han W, Kim IA. Tumor mutation burden, immune checkpoint crosstalk and radiosensitivity in single-cell RNA sequencing data of breast cancer. Radiother Oncol, 2020, 142: 202-209. |
40. | Zhou S, Huang YE, Liu H, et al. Single-cell RNA-seq dissects the intra-tumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Mol Ther Nucleic Acids, 2021, 23: 682-690. |
41. | Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer, 2021, 20(1): 131. doi: 10.1186/s12943-021-01428-1. |
42. | Ermakov MS, Nushtaeva AA, Richter VA, et al. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurnal Genet Selektsii, 2022, 26(1): 14-21. |
43. | Xiang X, Niu YR, Wang ZH, et al. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev, 2022, 67: 35-48. |
44. | Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell, 2017, 171(7): 1611-1624. |
45. | Valdés-Mora F, Salomon R, Gloss BS, et al. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep, 2021, 35(2): 108945. doi: 10.1016/j.celrep.2021.108945. |
46. | Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov, 2020, 10(9): 1330-1351. |
47. | Cords L, Tietscher S, Anzeneder T, et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat Commun, 2023, 14(1): 4294. doi: 10.1038/s41467-023-39762-1. |
48. | Li C, Yang L, Zhang Y, et al. Integrating single-cell and bulk transcriptomic analyses to develop a cancer-associated fibroblast-derived biomarker for predicting prognosis and therapeutic response in breast cancer. Front Immunol, 2024, 14: 1307588. doi: 10.3389/fimmu.2023.1307588. |
49. | Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer, 2021, 21(6): 345-359. |
50. | Xu Q, Chen S, Hu Y, et al. Landscape of immune microenviron-ment under immune cell infiltration pattern in breast cancer. Front Immunol, 2021, 12: 711433. doi: 10.3389/fimmu.2021.711433. |
51. | Pal B, Chen Y, Vaillant F, et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J, 2021, 40(11): e107333. doi: 10.15252/embj.2020107333. |
52. | Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 2018, 174(5): 1293-1308. |
53. | Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med, 2018, 24(7): 986-993. |
54. | Guo S, Liu X, Zhang J, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels T cell-related prognostic risk model and tumor immune microenvironment modulation in triple-negative breast cancer. Comput Biol Med, 2023, 161: 107066. doi: 10.1016/j.compbiomed.2023.107066. |
55. | Lu Y, Zhao Q, Liao JY, et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell, 2020, 180(6): 1081-1097. |
56. | Hu Q, Hong Y, Qi P, et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat Commun, 2021, 12(1): 2186. doi: 10.1038/s41467-021-22300-2. |
57. | Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity, 2019, 50(5): 1317-1334. |
58. | Bao X, Shi R, Zhao T, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol Immunother, 2021, 70(1): 189-202. |
59. | Molgora M, Esaulova E, Vermi W, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell, 2020, 182(4): 886-900. |
60. | Kersten K, Hu KH, Combes AJ, et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell, 2022, 40(6): 624-638. |
61. | Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet, 2021, 53(9): 1334-1347. |
62. | Huang H, Zhang H, Onuma AE, et al. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment. Adv Exp Med Biol, 2020, 1263: 13-23. |
63. | Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer, 2020, 20(9): 485-503. |
64. | SenGupta S, Hein LE, Xu Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol, 2021, 12: 659996. doi: 10.3389/fimmu.2021.659996. |
65. | Amer HT, Stein U, El Tayebi HM. The monocyte, a maestro in the tumor microenvironment (TME) of breast cancer. Cancers (Basel), 2022, 14(21): 5460. doi: 10.3390/cancers14215460. |
- 1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
- 2. Olsen TK, Baryawno N. Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol, 2018, 122(1): e57. doi: 10.1002/cpmb.57.
- 3. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol, 2018, 14(8): 479-492.
- 4. Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol, 2021, 14(1): 91. doi: 10.1186/s13045-021-01105-2.
- 5. Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-trans-criptome analysis of a single cell. Nat Methods, 2009, 6(5): 377-382.
- 6. Wang X, He Y, Zhang Q, et al. Direct comparative analyses of 10×Genomics chromium and Smart-seq2. Genomics Proteomics Bioinformatics, 2021, 19(2): 253-266.
- 7. Wang S, Sun ST, Zhang XY, et al. The evolution of single-cell RNA sequencing technology and application: progress and perspectives. Int J Mol Sci, 2023, 24(3): 2943. doi: 10.3390/ijms24032943.
- 8. Wang W, Zhong Y, Zhuang Z, et al. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med, 2021, 11(1): e253. doi: 10.1002/ctm2.253.
- 9. See P, Lum J, Chen J, et al. A single-cell sequencing guide for immunologists. Front Immunol, 2018, 9: 2425. doi: 10.3389/fimmu.2018.02425.
- 10. Williams CG, Lee HJ, Asatsuma T, et al. An introduction to spatial transcriptomics for biomedical research. Genome Med, 2022, 14(1): 68. doi: 10.1186/s13073-022-01075-1.
- 11. Zhang Y, Wang D, Peng M, et al. Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res, 2021, 40(1): 81. doi: 10.1186/s13046-021-01874-1.
- 12. Jovic D, Liang X, Zeng H, et al. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med, 2022, 12(3): e694. doi: 10.1002/ctm2.694.
- 13. Kaushik AM, Hsieh K, Wang TH. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(6): e1522. doi: 10.1002/wnan.1522.
- 14. Lindsay CR, Blackhall FH, Carmel A, et al. EPAC-lung: pooled analysis of circulating tumour cells in advanced non-small cell lung cancer. Eur J Cancer, 2019, 117: 60-68.
- 15. 李贱成, 徐克前. 单细胞转录组测序技术及其应用. 生命的化学, 2020, 40(8): 1208-1219.
- 16. Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun, 2017, 8: 14049. doi: 10.1038/ncomms14049.
- 17. Balzer MS, Ma Z, Zhou J, et al. How to get started with single cell RNA sequencing data analysis. J Am Soc Nephrol, 2021, 32(6): 1279-1292.
- 18. Griffiths JA, Richard AC, Bach K, et al. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat Commun, 2018, 9(1): 2667. doi: 10.1038/s41467-018-05083-x.
- 19. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol, 2019, 20(1): 296. doi: 10.1186/s13059-019-1874-1.
- 20. Bacher R, Chu LF, Leng N, et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods, 2017, 14(6): 584-586.
- 21. Tang W, Bertaux F, Thomas P, et al. BayNorm: bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics, 2020, 36(4): 1174-1181.
- 22. Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat Biotechnol, 2019, 37(6): 685-691.
- 23. Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods, 2019, 16(12): 1289-1296.
- 24. Zhou Y, Sharpee TO. Using global t-SNE to preserve intercluster data structure. Neural Comput, 2022, 34(8): 1637-1651.
- 25. Armstrong G, Martino C, Rahman G, et al. Uniform manifold approximation and projection (UMAP) reveals composite patterns and resolves visualization artifacts in microbiome data. mSystems, 2021, 6(5): e0069121. doi: 10.1128/mSystems.00691-21.
- 26. Coifman RR, Lafon S, Lee AB, et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci USA, 2005, 102(21): 7426-7431.
- 27. 李涛, 张泽坤, 顾连峰. 高通量单细胞转录组数据分析方法的研究进展. 福建农林大学学报(自然科学版), 2022, 51(2): 145-154.
- 28. Su M, Pan T, Chen QZ, et al. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil Med Res, 2022, 9(1): 68. doi: 10.1186/s40779-022-00434-8.
- 29. Welch DR. Tumor heterogeneity—A‘Contemporary Concept’ founded on historical insights and predictions. Cancer Res, 2016, 76(1): 4-6.
- 30. Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol, 2023, 41(10): 1809-1815.
- 31. Karaayvaz M, Cristea S, Gillespie SM, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun, 2018, 9(1): 3588. doi: 10.1038/s41467-018-06052-0.
- 32. Hida K, Maishi N, Annan DA, et al. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci, 2018, 19(5): 1272. doi: 10.3390/ijms19051272.
- 33. Zhang J, Lu T, Lu S, et al. Single-cell analysis of multiple cancer types reveals differences in endothelial cells between tumors and normal tissues. Comput Struct Biotechnol J, 2022, 21: 665-676.
- 34. El-Deiry WS, Goldberg RM, Lenz HJ, et al. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA Cancer J Clin, 2019, 69(4): 305-343.
- 35. Hamilton E, Shastry M, Shiller SM, et al. Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev, 2021, 100: 102286. doi: 10.1016/j.ctrv.2021.102286.
- 36. 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版). 中国癌症杂志, 2021, 31(10): 954-1040.
- 37. Chung W, Eum HH, Lee HO, et al. Single-cell RNA-seq enables com-prehensive tumour and immune cell profiling in primary breast cancer. Nat Commun, 2017, 8: 15081. doi: 10.1038/ncomms15081.
- 38. Wang Q, Guldner IH, Golomb SM, et al. Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor-resistant HER2-positive breast cancer. Nat Commun, 2019, 10(1): 3817. doi: 10.1038/s41467-019-11729-1.
- 39. Jang BS, Han W, Kim IA. Tumor mutation burden, immune checkpoint crosstalk and radiosensitivity in single-cell RNA sequencing data of breast cancer. Radiother Oncol, 2020, 142: 202-209.
- 40. Zhou S, Huang YE, Liu H, et al. Single-cell RNA-seq dissects the intra-tumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Mol Ther Nucleic Acids, 2021, 23: 682-690.
- 41. Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer, 2021, 20(1): 131. doi: 10.1186/s12943-021-01428-1.
- 42. Ermakov MS, Nushtaeva AA, Richter VA, et al. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurnal Genet Selektsii, 2022, 26(1): 14-21.
- 43. Xiang X, Niu YR, Wang ZH, et al. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev, 2022, 67: 35-48.
- 44. Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell, 2017, 171(7): 1611-1624.
- 45. Valdés-Mora F, Salomon R, Gloss BS, et al. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep, 2021, 35(2): 108945. doi: 10.1016/j.celrep.2021.108945.
- 46. Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov, 2020, 10(9): 1330-1351.
- 47. Cords L, Tietscher S, Anzeneder T, et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat Commun, 2023, 14(1): 4294. doi: 10.1038/s41467-023-39762-1.
- 48. Li C, Yang L, Zhang Y, et al. Integrating single-cell and bulk transcriptomic analyses to develop a cancer-associated fibroblast-derived biomarker for predicting prognosis and therapeutic response in breast cancer. Front Immunol, 2024, 14: 1307588. doi: 10.3389/fimmu.2023.1307588.
- 49. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer, 2021, 21(6): 345-359.
- 50. Xu Q, Chen S, Hu Y, et al. Landscape of immune microenviron-ment under immune cell infiltration pattern in breast cancer. Front Immunol, 2021, 12: 711433. doi: 10.3389/fimmu.2021.711433.
- 51. Pal B, Chen Y, Vaillant F, et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J, 2021, 40(11): e107333. doi: 10.15252/embj.2020107333.
- 52. Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 2018, 174(5): 1293-1308.
- 53. Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med, 2018, 24(7): 986-993.
- 54. Guo S, Liu X, Zhang J, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels T cell-related prognostic risk model and tumor immune microenvironment modulation in triple-negative breast cancer. Comput Biol Med, 2023, 161: 107066. doi: 10.1016/j.compbiomed.2023.107066.
- 55. Lu Y, Zhao Q, Liao JY, et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell, 2020, 180(6): 1081-1097.
- 56. Hu Q, Hong Y, Qi P, et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat Commun, 2021, 12(1): 2186. doi: 10.1038/s41467-021-22300-2.
- 57. Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity, 2019, 50(5): 1317-1334.
- 58. Bao X, Shi R, Zhao T, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol Immunother, 2021, 70(1): 189-202.
- 59. Molgora M, Esaulova E, Vermi W, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell, 2020, 182(4): 886-900.
- 60. Kersten K, Hu KH, Combes AJ, et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell, 2022, 40(6): 624-638.
- 61. Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet, 2021, 53(9): 1334-1347.
- 62. Huang H, Zhang H, Onuma AE, et al. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment. Adv Exp Med Biol, 2020, 1263: 13-23.
- 63. Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer, 2020, 20(9): 485-503.
- 64. SenGupta S, Hein LE, Xu Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol, 2021, 12: 659996. doi: 10.3389/fimmu.2021.659996.
- 65. Amer HT, Stein U, El Tayebi HM. The monocyte, a maestro in the tumor microenvironment (TME) of breast cancer. Cancers (Basel), 2022, 14(21): 5460. doi: 10.3390/cancers14215460.