- 1. Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, P.R. China;
- 2. Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, P.R. China;
Cancer presents a significant global public health challenge, impacting human health on a broad scale. In recent years, the rapid advancement of big data-based bioinformatics has unveiled crucial potential in precision oncology through various omics research methods. The advent of radiomics has notably expanded the application scope of medical imaging in the field. However, due to the multi-level and multifactorial nature of tumor initiation and progression, a single omics information remains insufficient to meet the demands for advancing precision oncology strategies. Multi-omics research has become an emerging trend. The research paradigm integrating radiomics with other omics offers a novel perspective for personalized decision-making in oncology. Nevertheless, there persists a need to introduce more integrated new technologies and theories to expedite the progress of this field.
Citation: HUANG Yanqi, LIU Zaiyi. Integrating radiomics into multi-omics research: unveiling new perspectives on precision oncology. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(3): 257-264. doi: 10.7507/1007-9424.202312050 Copy
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. |
2. | Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, They are data. Radiology, 2016, 278(2): 563-577. |
3. | Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol, 2016, 34(18): 2157-2164. |
4. | Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762. |
5. | Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin, 2019, 69(2): 127-157. |
6. | Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019, 70(6): 1133-1144. |
7. | Conti A, Duggento A, Indovina I, et al. Radiomics in breast cancer classification and prediction. Semin Cancer Biol, 2021, 72: 238-250. |
8. | Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol, 2022, 19(2): 132-146. |
9. | Hieter P, Boguski M. Functional genomics: it’s all how you read it. Science, 1997, 278(5338): 601-602. |
10. | Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57-63. |
11. | Ding Z, Wang N, Ji N, et al. Proteomics technologies for cancer liquid biopsies. Mol Cancer, 2022, 21(1): 53. |
12. | Jacob M, Lopata AL, Dasouki M, et al. Metabolomics toward personalized medicine. Mass Spectrom Rev, 2019, 38(3): 221-238. |
13. | Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell, 2022, 40(9): 920-938. |
14. | Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet, 2021, 22(1): 3-18. |
15. | Le Large TYS, Bijlsma MF, Kazemier G, et al. Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Semin Cancer Biol, 2017 Jun: 44: 153-169. |
16. | Jing Y, Yang J, Johnson DB, et al. Harnessing big data to characterize immune-related adverse events. Nat Rev Clin Oncol, 2022, 19(4): 269-280. |
17. | Aldea M, Friboulet L, Apcher S, et al. Precision medicine in the era of multi-omics: can the data tsunami guide rational treatment decision? ESMO Open, 2023, 8(5): 101642. doi: 10.1016/ j. esmoop.2023.101642. |
18. | Migliozzi S, Oh YT, Hasanain M, et al. Integrative multi-omics networks identify PKCδ and DNA-PK as master kinases of glioblastoma subtypes and guide targeted cancer therapy. Nat Cancer, 2023, 4(2): 181-202. |
19. | Yang J, Chen Y, Jing Y, et al. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol, 2023, 20(4): 211-228. |
20. | Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell, 2019, 179(2): 561-577. |
21. | Liu Z, Zhao Y, Kong P, et al. Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma. Cancer Cell, 2023, 41(1): 181-195. |
22. | Kang W, Qiu X, Luo Y, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med, 2023, 21(1): 598. |
23. | Karlo CA, Di Paolo PL, Chaim J, et al. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology, 2014, 270(2): 464-471. |
24. | Mazurowski MA, Zhang J, Grimm LJ, et al. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology, 2014, 273(2): 365-372. |
25. | Yu Y, He Z, Ouyang J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. EBioMedicine, 2021, 69: 103460. |
26. | Jiang L, You C, Xiao Y, et al. Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer. Cell Rep Med, 2022, 3(7): 100694. |
27. | Guo W, Li H, Zhu Y, et al. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging (Bellingham), 2015, 2(4): 041007. |
28. | Li H, Zhu Y, Burnside ES, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology, 2016, 281(2): 382-391. |
29. | Burt JB, Demirtaş M, Eckner WJ, et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci, 2018, 21(9): 1251-1259. |
30. | Gryglewski G, Seiger R, James GM, et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage, 2018 Aug 1: 176: 259-267. |
31. | Ritchie J, Pantazatos SP, French L. Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex. Neuroimage, 2018, 174: 504-517. |
32. | Katrib A, Hsu W, Bui A, et al. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment. Quant Biol, 2016, 4(1): 1-12. |
33. | Huang C, Cintra M, Brennan K, et al. Development and validation of radiomic signatures of head and neck squamous cell carcinoma molecular features and subtypes. EBioMedicine, 2019, 45: 70-80. |
34. | Fan L, Cao Q, Ding X, et al. Radiotranscriptomics signature-based predictive nomograms for radiotherapy response in patients with nonsmall cell lung cancer: Combination and association of CT features and serum miRNAs levels. Cancer Med, 2020, 9(14): 5065-5074. |
35. | Le NQK, Hung TNK, Do DT, et al. Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Comput Biol Med, 2021, 132: 104320. |
36. | Crombé A, Bertolo F, Fadli D, et al. Distinct patterns of the natural evolution of soft tissue sarcomas on pre-treatment MRIs captured with delta-radiomics correlate with gene expression profiles. Eur Radiol, 2023, 33(2): 1205-1218. |
37. | Lin P, Lin YQ, Gao RZ, et al. Integrative radiomics and transcriptomics analyses reveal subtype characterization of non-small cell lung cancer. Eur Radiol, 2023, 33(9): 6414-6425. |
38. | Alvarez-Jimenez C, Sandino AA, Prasanna P, et al. Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: Preliminary results. Cancers (Basel), 2020, 12(12): 3663. |
39. | Brancato V, Cavaliere C, Garbino N, et al. The relationship between radiomics and pathomics in Glioblastoma patients: Preliminary results from a cross-scale association study. Front Oncol, 2022, 12: 1005805. |
40. | Feng L, Liu Z, Li C, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Lancet Digit Health, 2022, 4(1): e8-e17. |
41. | Wan L, Sun Z, Peng W, et al. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics. J Magn Reson Imaging, 2022, 56(4): 1130-1142. |
42. | Wang R, Dai W, Gong J, et al. Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol, 2022, 15(1): 11. |
43. | Steyaert S, Pizurica M, Nagaraj D, et al. Multimodal data fusion for cancer biomarker discovery with deep learning. Nat Mach Intell, 2023, 5(4): 351-362. |
44. | Vaidya P, Bera K, Gupta A, et al. CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy following surgery in StageⅠ, Ⅱ resectable non-small cell lung cancer: a retrospective multi-cohort study for outcome prediction. Lancet Digit Health, 2020, 2(3): e116-e128. |
45. | Wang X, Xie T, Luo J, et al. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment. Breast Cancer Res, 2022, 24(1): 20. |
46. | Su GH, Xiao Y, You C, et al. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets. Sci Adv, 2023, 9(40): eadf0837. |
47. | Boehm KM, Aherne EA, Ellenson L, et al. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat Cancer, 2022, 3(6): 723-733. |
48. | Vanguri RS, Luo J, Aukerman AT, et al. Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer. Nat Cancer, 2022, 3(10): 1151-1164. |
49. | Luo Y. Evaluating the state of the art in missing data imputation for clinical data. Brief Bioinform, 2022, 23(1): bbab489. |
50. | Yoon J, Zame WR, van der Schaar M. Estimating missing data in temporal data streams using multi- directional recurrent neural networks. IEEE Trans Biomed Eng, 2019, 66(5): 1477-1490. |
51. | Li J, Yan XS, Chaudhary D, et al. Imputation of missing values for electronic health record laboratory data. NPJ Digit Med, 2021, 4(1): 147. |
52. | Cheerla A, Gevaert O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics, 2019, 35(14): i446-i454. |
53. | Ning Z, Du D, Tu C, et al. Relation-aware shared representation learning for cancer prognosis analysis with auxiliary clinical variables and incomplete multi-modality data. IEEE Trans Med Imaging, 2022, 41(1): 186-198. |
54. | Zhou T, Liu M, Thung KH, et al. Latent representation learning for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and genetic data. IEEE Trans Med Imaging, 2019, 38(10): 2411-2422. |
55. | Hutter C, Zenklusen JC. The cancer genome atlas: creating lasting value beyond its data. Cell, 2018, 173(2): 283-285. |
56. | Grossman RL, Heath AP, Ferretti V, et al. Toward a shared vision for cancer genomic data. N Engl J Med, 2016, 375(12): 1109-1112. |
57. | Hinkson IV, Davidsen TM, Klemm JD, et al. A comprehensive infrastructure for big data in cancer research: accelerating cancer research and precision medicine. Front Cell Dev Biol, 2017, 5: 83. |
58. | Prior F, Smith K, Sharma A, et al. The public cancer radiology imaging collections of The Cancer Imaging Archive. Sci Data, 2017, 4: 170124. |
59. | Jennings CN, Humphries MP, Wood S, et al. Bridging the gap with the UK Genomics Pathology Imaging Collection. Nat Med, 2022, 28(6): 1107-1108. |
60. | Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 2016, 3: 160018. |
61. | Shi Z, Zhovannik I, Traverso A, et al. Distributed radiomics as a signature validation study using the Personal Health Train infrastructure. Sci Data, 2019, 6(1): 218. |
62. | Deist TM, Dankers FJWM, Ojha P, et al. Distributed learning on 20 000+ lung cancer patients—The personal health train. Radiother Oncol, 2020, 144: 189-200. |
63. | Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med, 2021, 27(10): 1735-1743. |
64. | Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med, 2020, 3: 119. |
65. | Sadilek A, Liu L, Nguyen D, et al. Privacy-first health research with federated learning. NPJ Digit Med, 2021, 4(1): 132. |
66. | O’Connor LM, O’Connor BA, Lim SB, et al. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J Pharm Anal, 2023, 13(8): 836-850. |
67. | Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 2013, 6(269): pl1. |
68. | Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Brief Bioinform, 2022, 23(2): bbab569. |
69. | Li J, Lu Q, Wen Y. Multi-kernel linear mixed model with adaptive lasso for prediction analysis on high-dimensional multi-omics data. Bioinformatics, 2020, 36(6): 1785-1794. |
70. | Champion M, Brennan K, Croonenborghs T, et al. Module analysis captures pancancer genetically and epigenetically deregulated cancer driver genes for smoking and antiviral response. EBioMedicine, 2018, 27: 156-166. |
71. | Koh HWL, Fermin D, Vogel C, et al. iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. NPJ Syst Biol Appl, 2019, 5: 22. |
72. | Rohart F, Gautier B, Singh A, et al. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Comput Biol, 2017, 13(11): e1005752. |
73. | Eraslan G, Avsec Ž, Gagneur J, et al. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet, 2019, 20(7): 389-403. |
74. | Demichev V, Messner CB, Vernardis SI, et al. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods, 2020, 17(1): 41-44. |
75. | He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng, 2020, 4(8): 827-834. |
76. | Sen P, Lamichhane S, Mathema VB, et al. Deep learning meets metabolomics: a methodological perspective. Brief Bioinform, 2021, 22(2): 1531-1542. |
77. | Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res, 2018, 24(6): 1248-1259. |
78. | Chai H, Zhou X, Zhang Z, et al. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput Biol Med, 2021, 134: 104481. |
79. | Malik V, Kalakoti Y, Sundar D. Deep learning assisted multi-omics integration for survival and drug- response prediction in breast cancer. BMC Genomics, 2021, 22(1): 214. |
80. | Zhao L, Dong Q, Luo C, et al. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis. Comput Struct Biotechnol J, 2021, 19: 2719-2725. |
81. | He X, Liu X, Zuo F, et al. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol, 2023, 88: 187-200. |
82. | Bodein A, Scott-Boyer MP, Perin O, et al. Interpretation of network-based integration from multi- omics longitudinal data. Nucleic Acids Res, 2022, 50(5): e27. |
83. | Xu J, Mao C, Hou Y, et al. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer's disease. Cell Rep, 2022, 41(9): 111717. |
84. | Lombardo E, Hess J, Kurz C, et al. DeepClassPathway: Molecular pathway aware classification using explainable deep learning. Eur J Cancer, 2022, 176: 41-49. |
85. | Chen Y, Dong Y, Si L, et al. Dual polarization modality fusion network for assisting pathological diagnosis. IEEE Trans Med Imaging, 2023, 42(1): 304-316. |
86. | Chen RJ, Lu MY, Williamson DFK, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell, 2022, 40(8): 865-878. |
87. | Dickinson Q, Meyer JG. Positional SHAP (PoSHAP) for interpretation of machine learning models trained from biological sequences. PLoS Comput Biol, 2022, 18(1): e1009736. |
- 1. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
- 2. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, They are data. Radiology, 2016, 278(2): 563-577.
- 3. Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol, 2016, 34(18): 2157-2164.
- 4. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
- 5. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin, 2019, 69(2): 127-157.
- 6. Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019, 70(6): 1133-1144.
- 7. Conti A, Duggento A, Indovina I, et al. Radiomics in breast cancer classification and prediction. Semin Cancer Biol, 2021, 72: 238-250.
- 8. Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol, 2022, 19(2): 132-146.
- 9. Hieter P, Boguski M. Functional genomics: it’s all how you read it. Science, 1997, 278(5338): 601-602.
- 10. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57-63.
- 11. Ding Z, Wang N, Ji N, et al. Proteomics technologies for cancer liquid biopsies. Mol Cancer, 2022, 21(1): 53.
- 12. Jacob M, Lopata AL, Dasouki M, et al. Metabolomics toward personalized medicine. Mass Spectrom Rev, 2019, 38(3): 221-238.
- 13. Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell, 2022, 40(9): 920-938.
- 14. Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet, 2021, 22(1): 3-18.
- 15. Le Large TYS, Bijlsma MF, Kazemier G, et al. Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Semin Cancer Biol, 2017 Jun: 44: 153-169.
- 16. Jing Y, Yang J, Johnson DB, et al. Harnessing big data to characterize immune-related adverse events. Nat Rev Clin Oncol, 2022, 19(4): 269-280.
- 17. Aldea M, Friboulet L, Apcher S, et al. Precision medicine in the era of multi-omics: can the data tsunami guide rational treatment decision? ESMO Open, 2023, 8(5): 101642. doi: 10.1016/ j. esmoop.2023.101642.
- 18. Migliozzi S, Oh YT, Hasanain M, et al. Integrative multi-omics networks identify PKCδ and DNA-PK as master kinases of glioblastoma subtypes and guide targeted cancer therapy. Nat Cancer, 2023, 4(2): 181-202.
- 19. Yang J, Chen Y, Jing Y, et al. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol, 2023, 20(4): 211-228.
- 20. Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell, 2019, 179(2): 561-577.
- 21. Liu Z, Zhao Y, Kong P, et al. Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma. Cancer Cell, 2023, 41(1): 181-195.
- 22. Kang W, Qiu X, Luo Y, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med, 2023, 21(1): 598.
- 23. Karlo CA, Di Paolo PL, Chaim J, et al. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology, 2014, 270(2): 464-471.
- 24. Mazurowski MA, Zhang J, Grimm LJ, et al. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology, 2014, 273(2): 365-372.
- 25. Yu Y, He Z, Ouyang J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. EBioMedicine, 2021, 69: 103460.
- 26. Jiang L, You C, Xiao Y, et al. Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer. Cell Rep Med, 2022, 3(7): 100694.
- 27. Guo W, Li H, Zhu Y, et al. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging (Bellingham), 2015, 2(4): 041007.
- 28. Li H, Zhu Y, Burnside ES, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology, 2016, 281(2): 382-391.
- 29. Burt JB, Demirtaş M, Eckner WJ, et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci, 2018, 21(9): 1251-1259.
- 30. Gryglewski G, Seiger R, James GM, et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage, 2018 Aug 1: 176: 259-267.
- 31. Ritchie J, Pantazatos SP, French L. Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex. Neuroimage, 2018, 174: 504-517.
- 32. Katrib A, Hsu W, Bui A, et al. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment. Quant Biol, 2016, 4(1): 1-12.
- 33. Huang C, Cintra M, Brennan K, et al. Development and validation of radiomic signatures of head and neck squamous cell carcinoma molecular features and subtypes. EBioMedicine, 2019, 45: 70-80.
- 34. Fan L, Cao Q, Ding X, et al. Radiotranscriptomics signature-based predictive nomograms for radiotherapy response in patients with nonsmall cell lung cancer: Combination and association of CT features and serum miRNAs levels. Cancer Med, 2020, 9(14): 5065-5074.
- 35. Le NQK, Hung TNK, Do DT, et al. Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Comput Biol Med, 2021, 132: 104320.
- 36. Crombé A, Bertolo F, Fadli D, et al. Distinct patterns of the natural evolution of soft tissue sarcomas on pre-treatment MRIs captured with delta-radiomics correlate with gene expression profiles. Eur Radiol, 2023, 33(2): 1205-1218.
- 37. Lin P, Lin YQ, Gao RZ, et al. Integrative radiomics and transcriptomics analyses reveal subtype characterization of non-small cell lung cancer. Eur Radiol, 2023, 33(9): 6414-6425.
- 38. Alvarez-Jimenez C, Sandino AA, Prasanna P, et al. Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: Preliminary results. Cancers (Basel), 2020, 12(12): 3663.
- 39. Brancato V, Cavaliere C, Garbino N, et al. The relationship between radiomics and pathomics in Glioblastoma patients: Preliminary results from a cross-scale association study. Front Oncol, 2022, 12: 1005805.
- 40. Feng L, Liu Z, Li C, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Lancet Digit Health, 2022, 4(1): e8-e17.
- 41. Wan L, Sun Z, Peng W, et al. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics. J Magn Reson Imaging, 2022, 56(4): 1130-1142.
- 42. Wang R, Dai W, Gong J, et al. Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol, 2022, 15(1): 11.
- 43. Steyaert S, Pizurica M, Nagaraj D, et al. Multimodal data fusion for cancer biomarker discovery with deep learning. Nat Mach Intell, 2023, 5(4): 351-362.
- 44. Vaidya P, Bera K, Gupta A, et al. CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy following surgery in StageⅠ, Ⅱ resectable non-small cell lung cancer: a retrospective multi-cohort study for outcome prediction. Lancet Digit Health, 2020, 2(3): e116-e128.
- 45. Wang X, Xie T, Luo J, et al. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment. Breast Cancer Res, 2022, 24(1): 20.
- 46. Su GH, Xiao Y, You C, et al. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets. Sci Adv, 2023, 9(40): eadf0837.
- 47. Boehm KM, Aherne EA, Ellenson L, et al. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat Cancer, 2022, 3(6): 723-733.
- 48. Vanguri RS, Luo J, Aukerman AT, et al. Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer. Nat Cancer, 2022, 3(10): 1151-1164.
- 49. Luo Y. Evaluating the state of the art in missing data imputation for clinical data. Brief Bioinform, 2022, 23(1): bbab489.
- 50. Yoon J, Zame WR, van der Schaar M. Estimating missing data in temporal data streams using multi- directional recurrent neural networks. IEEE Trans Biomed Eng, 2019, 66(5): 1477-1490.
- 51. Li J, Yan XS, Chaudhary D, et al. Imputation of missing values for electronic health record laboratory data. NPJ Digit Med, 2021, 4(1): 147.
- 52. Cheerla A, Gevaert O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics, 2019, 35(14): i446-i454.
- 53. Ning Z, Du D, Tu C, et al. Relation-aware shared representation learning for cancer prognosis analysis with auxiliary clinical variables and incomplete multi-modality data. IEEE Trans Med Imaging, 2022, 41(1): 186-198.
- 54. Zhou T, Liu M, Thung KH, et al. Latent representation learning for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and genetic data. IEEE Trans Med Imaging, 2019, 38(10): 2411-2422.
- 55. Hutter C, Zenklusen JC. The cancer genome atlas: creating lasting value beyond its data. Cell, 2018, 173(2): 283-285.
- 56. Grossman RL, Heath AP, Ferretti V, et al. Toward a shared vision for cancer genomic data. N Engl J Med, 2016, 375(12): 1109-1112.
- 57. Hinkson IV, Davidsen TM, Klemm JD, et al. A comprehensive infrastructure for big data in cancer research: accelerating cancer research and precision medicine. Front Cell Dev Biol, 2017, 5: 83.
- 58. Prior F, Smith K, Sharma A, et al. The public cancer radiology imaging collections of The Cancer Imaging Archive. Sci Data, 2017, 4: 170124.
- 59. Jennings CN, Humphries MP, Wood S, et al. Bridging the gap with the UK Genomics Pathology Imaging Collection. Nat Med, 2022, 28(6): 1107-1108.
- 60. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 2016, 3: 160018.
- 61. Shi Z, Zhovannik I, Traverso A, et al. Distributed radiomics as a signature validation study using the Personal Health Train infrastructure. Sci Data, 2019, 6(1): 218.
- 62. Deist TM, Dankers FJWM, Ojha P, et al. Distributed learning on 20 000+ lung cancer patients—The personal health train. Radiother Oncol, 2020, 144: 189-200.
- 63. Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med, 2021, 27(10): 1735-1743.
- 64. Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med, 2020, 3: 119.
- 65. Sadilek A, Liu L, Nguyen D, et al. Privacy-first health research with federated learning. NPJ Digit Med, 2021, 4(1): 132.
- 66. O’Connor LM, O’Connor BA, Lim SB, et al. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J Pharm Anal, 2023, 13(8): 836-850.
- 67. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 2013, 6(269): pl1.
- 68. Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Brief Bioinform, 2022, 23(2): bbab569.
- 69. Li J, Lu Q, Wen Y. Multi-kernel linear mixed model with adaptive lasso for prediction analysis on high-dimensional multi-omics data. Bioinformatics, 2020, 36(6): 1785-1794.
- 70. Champion M, Brennan K, Croonenborghs T, et al. Module analysis captures pancancer genetically and epigenetically deregulated cancer driver genes for smoking and antiviral response. EBioMedicine, 2018, 27: 156-166.
- 71. Koh HWL, Fermin D, Vogel C, et al. iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. NPJ Syst Biol Appl, 2019, 5: 22.
- 72. Rohart F, Gautier B, Singh A, et al. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Comput Biol, 2017, 13(11): e1005752.
- 73. Eraslan G, Avsec Ž, Gagneur J, et al. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet, 2019, 20(7): 389-403.
- 74. Demichev V, Messner CB, Vernardis SI, et al. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods, 2020, 17(1): 41-44.
- 75. He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng, 2020, 4(8): 827-834.
- 76. Sen P, Lamichhane S, Mathema VB, et al. Deep learning meets metabolomics: a methodological perspective. Brief Bioinform, 2021, 22(2): 1531-1542.
- 77. Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res, 2018, 24(6): 1248-1259.
- 78. Chai H, Zhou X, Zhang Z, et al. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput Biol Med, 2021, 134: 104481.
- 79. Malik V, Kalakoti Y, Sundar D. Deep learning assisted multi-omics integration for survival and drug- response prediction in breast cancer. BMC Genomics, 2021, 22(1): 214.
- 80. Zhao L, Dong Q, Luo C, et al. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis. Comput Struct Biotechnol J, 2021, 19: 2719-2725.
- 81. He X, Liu X, Zuo F, et al. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol, 2023, 88: 187-200.
- 82. Bodein A, Scott-Boyer MP, Perin O, et al. Interpretation of network-based integration from multi- omics longitudinal data. Nucleic Acids Res, 2022, 50(5): e27.
- 83. Xu J, Mao C, Hou Y, et al. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer's disease. Cell Rep, 2022, 41(9): 111717.
- 84. Lombardo E, Hess J, Kurz C, et al. DeepClassPathway: Molecular pathway aware classification using explainable deep learning. Eur J Cancer, 2022, 176: 41-49.
- 85. Chen Y, Dong Y, Si L, et al. Dual polarization modality fusion network for assisting pathological diagnosis. IEEE Trans Med Imaging, 2023, 42(1): 304-316.
- 86. Chen RJ, Lu MY, Williamson DFK, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell, 2022, 40(8): 865-878.
- 87. Dickinson Q, Meyer JG. Positional SHAP (PoSHAP) for interpretation of machine learning models trained from biological sequences. PLoS Comput Biol, 2022, 18(1): e1009736.
Journal type citation(28)
1. | 韦小波,劳景茂,刘广,邓伟,简文红. 单孔腹腔镜胃癌根治术的治疗进展与争议. 中外医学研究. 2024(07): 168-171 . ![]() | |
2. | 柳乌桃,陈丽圆,郑缘. 基于决策树算法的胃癌患者腹腔镜术后发生肺动脉栓塞的风险预测模型的建立. 医学理论与实践. 2024(13): 2172-2176+2195 . ![]() | |
3. | 周翰宗,马晓飞,张俊杰,李瑞君,王敏. 腹腔镜胃癌根治术联合腹腔热灌注化疗对进展期胃癌患者免疫功能及血浆bFGF、VEGF的影响. 临床医学工程. 2023(01): 1-2 . ![]() | |
4. | 钟南海,黎名禄,谢海华. 经腹腔镜与开腹根治术治疗进展期胃癌的对比研究. 右江医学. 2023(02): 115-119 . ![]() | |
5. | 魏鑫,千雷. 完全腹腔镜与腹腔镜辅助胃癌根治术的近期临床疗效对比. 临床普外科电子杂志. 2023(01): 33-36 . ![]() | |
6. | 杨育鑫,李欣. 硬膜外麻醉联合全身麻醉在胃癌根治术中的应用效果. 湖北科技学院学报(医学版). 2023(02): 120-123 . ![]() | |
7. | 雷洪军,潘金,刘杰,姚勇,奉镭. 早期胃癌患者行ESD与EMR的疗效比较及对血清CA125、胃蛋白酶原水平的影响. 临床消化病杂志. 2023(03): 203-206 . ![]() | |
8. | 孙振普,张建生,冯福梅,何志国,杜海鹏,吴岭. 不同入路腹腔镜胃癌根治术对胃癌患者胃肠功能障碍及肿瘤标志物水平的影响. 医学信息. 2023(21): 110-113 . ![]() | |
9. | 陈银,鲁迪,邓文文,禹菲菲. 多模式健康宣教在胃癌患者胶囊内镜检查中的应用效果. 癌症进展. 2023(19): 2178-2181 . ![]() | |
10. | 李颖颖,郭亚男. 完全腹腔镜远端胃癌根治术与腹腔镜辅助远端胃癌根治术的近期疗效比较. 中国实用医刊. 2023(21): 5-8 . ![]() | |
11. | 景小松,王耿泽,廖珍,裴正浩. 腹腔镜辅助根治性远端胃癌胃大部切除术中不同吻合方式对疗效及预后的影响. 中国实用医刊. 2023(24): 1-4 . ![]() | |
12. | 丁鹏,夏秋燕. 以问题为导向的针对性护理干预对胃癌手术患者术后康复的影响观察. 现代诊断与治疗. 2023(21): 3308-3310 . ![]() | |
13. | 伍德福,方心安,鲁修明,赵群. 腹腔镜辅助胃癌D2根治术治疗老年进展期胃癌患者近期效果及远期预后观察. 临床误诊误治. 2022(05): 45-47 . ![]() | |
14. | 刘紫朦,赵传稳,余昌达,叶琳. 腹腔镜辅助胃癌根治术对胃癌患者机体应激反应及免疫功能的影响. 中国医学创新. 2022(23): 65-68 . ![]() | |
15. | 曹小进,张光亮,裴建灰. 腹腔镜辅助远端胃癌根治术对进展期胃癌患者炎性应激和生存期的影响. 中国实用医刊. 2022(15): 44-47 . ![]() | |
16. | 贾泽斌,蒋浩海. 腹腔镜辅助胃癌根治术治疗进展期胃癌的临床疗效及近期预后观察. 医学信息. 2022(20): 45-48 . ![]() | |
17. | 唐雲,顾徐丹,裴艳俊. 以问题为导向的护理模式在行腹腔镜胃癌根治术后患者康复中的应用效果. 中西医结合护理(中英文). 2022(10): 118-120 . ![]() | |
18. | 扈小发,邓明飞. 胃癌多方式治疗探析. 中国中医药现代远程教育. 2021(08): 201-203 . ![]() | |
19. | 刘艺华,刘俊华. 腹腔镜辅助小切口胃癌根治术治疗进展期胃癌的临床价值分析. 基层医学论坛. 2021(28): 4092-4094 . ![]() | |
20. | 邢玉新. 胃癌患者进行腹腔镜手术治疗的特征及应用进展. 中国医疗器械信息. 2021(18): 23-24+69 . ![]() | |
21. | 张晓勇,彭芃,许和风. 腹腔镜辅助胃癌根治术治疗胃癌的效果. 中国当代医药. 2021(29): 104-107 . ![]() | |
22. | 白亚珍,张倩,王淑娟. 全腹腔镜与腹腔镜远端胃癌根治术治疗胃癌的临床比较. 实用中西医结合临床. 2021(24): 116-117+125 . ![]() | |
23. | 吴杰. 腹腔镜辅助胃癌根治手术治疗进展期胃癌的短期疗效分析. 世界复合医学. 2021(12): 114-117 . ![]() | |
24. | 苗青旺. 进展期胃癌应用腹腔镜手术与开腹根治术的疗效对比分析. 山西医药杂志. 2020(02): 190-192 . ![]() | |
25. | 柳建垒,涂春明,李富. 腹腔镜胃癌根治术治疗进展期远端胃癌患者的临床分析. 医学理论与实践. 2020(13): 2130-2132 . ![]() | |
26. | 李建宏. 腹腔镜辅助下与开腹胃癌根治术对远端胃癌患者的疗效及对其免疫功能和生活质量的影响. 当代医学. 2020(29): 39-41 . ![]() | |
27. | 罗云. 比较腹腔镜与开腹胃癌根治术治疗进展期胃癌的临床效果. 世界复合医学. 2020(10): 108-110 . ![]() | |
28. | 姜希泉. 进展期胃癌采用腹腔镜与开腹胃癌根治术治疗的效果分析. 中国实用医药. 2020(31): 57-59 . ![]() |
Other types of references(2)
1. | 扈小发. 进展期胃癌术后患者预后影响因素及生存分析[D]. 新疆医科大学. 2021. ![]() | |
2. | 顾雪峰. 全腹腔镜胃癌D2根治术治疗进展期胃癌的患者的临床研究[D]. 苏州大学. 2022. ![]() |