1. |
Machlowska J, Baj J, Sitarz M, et al. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci, 2020, 21(11): 4012. doi: 10.3390/ijms21114012.
|
2. |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl), 2021, 134(7): 783-791.
|
3. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin, 2021, 71(1): 7-33.
|
4. |
Arneth B. Tumor microenvironment. Medicina (Kaunas), 2019, 56(1): 15. doi: 10.3390/medicina56010015.
|
5. |
Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature, 2004, 432(7015): 332-337.
|
6. |
Aizawa T, Karasawa H, Funayama R, et al. Cancer-associated fibroblasts secrete Wnt2 to promote cancer progression in colorectal cancer. Cancer Med, 2019, 8(14): 6370-6382.
|
7. |
Hu YB, Yan C, Mu L, et al. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene, 2019, 38(11): 1951-1965.
|
8. |
Kennerdell JR, Fetter RD, Bargmann CI. Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans. Development, 2009, 136(22): 3801-3810.
|
9. |
Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000, 406(6795): 536-540.
|
10. |
Rojas A, Araya P, Gonzalez I, et al. Gastric tumor microen-vironment. Adv Exp Med Biol, 2020, 1226: 23-35.
|
11. |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646-674.
|
12. |
Giusti I, Di Francesco M, Poppa G, et al. Tumor-derived extracellular vesicles activate normal human fibroblasts to a cancer-associated fibroblast-like phenotype, sustaining a pro-tumorigenic microenvironment. Front Oncol, 2022, 12: 839880. doi: 10.3389/fonc.2022.839880.
|
13. |
Shelton M, Anene CA, Nsengimana J, et al. The role of CAF derived exosomal microRNAs in the tumour microenvironment of melanoma. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188456. doi: 10.1016/j.bbcan.2020.188456.
|
14. |
Wu X, Tao P, Zhou Q, et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget, 2017, 8(13): 20741-20750.
|
15. |
Shi L, Wang Z, Geng X, et al. Exosomal miRNA-34 from cancer-associated fibroblasts inhibits growth and invasion of gastric cancercells in vitro and in vivo. Aging (Albany NY), 2020, 12(9): 8549-8564.
|
16. |
Kramer N, Schmöllerl J, Unger C, et al. Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene, 2017, 36(39): 5460-5472.
|
17. |
Hirashima T, Karasawa H, Aizawa T, et al. Wnt5a in cancer-associated fibroblasts promotes colorectal cancer progression. Biochem Biophys Res Commun, 2021, 568: 37-42.
|
18. |
Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423(6938): 448-452.
|
19. |
Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol, 2020, 13(1): 165. doi: 10.1186/s13045-020-00990-3.
|
20. |
凌煜玮, 康骅. 肿瘤相关成纤维细胞在肿瘤微环境中免疫调节作用的研究现状. 中国普外基础与临床杂志, 2020, 27(12): 1593-1597.
|
21. |
Bueno MLP, Saad STO, Roversi FM. WNT5A in tumor development and progression: A comprehensive review. Biomed Pharmacother, 2022, 155: 113599. doi: 10.1016/j.biopha.2022.113599.
|
22. |
Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982, 31(1): 99-109.
|
23. |
Astudillo P. Wnt5a signaling in gastric cancer. Front Cell Dev Biol, 2020, 8: 110. doi: 10.3389/fcell.2020.00110.
|
24. |
Ma Z, Li X, Mao Y, et al. Interferon-dependent SLC14A1+ cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell, 2022, 40(12): 1550-1565.
|
25. |
Li M, Zheng Y, Li X, et al. ATBF1 is a potential diagnostic marker of histological grade and functions via WNT5A in breast cancer. BMC Cancer, 2022, 22(1): 1280. doi: 10.1186/s12885-022-10380-2.
|
26. |
Zhou W, Mei J, Gu D, et al. Wnt5a: A promising therapeutic target in ovarian cancer. Pathol Res Pract, 2021, 219: 153348. doi: 10.1016/j.prp.2021.153348.
|
27. |
Dykes SS, Hughes VS, Wiggins JM, et al. Stromal cells in breast cancer as a potential therapeutic target. Oncotarget, 2018, 9(34): 23761-23779.
|