1. |
Qi J, Li M, Wang L, et al. National and subnational trends in cancer burden in China, 2005-20: an analysis of national mortality surveillance data. Lancet Public Health, 2023, 8(12): e943-e955. doi: 10.1016/S2468-2667(23)00211-6.
|
2. |
The National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN Guidelines). Colon carcinoma. Version 1. 2023.
|
3. |
Pauken KE, Torchia JA, Chaudhri A, et al. Emerging concepts in PD-1 checkpoint biology. Semin Immunol, 2021, 52: 101480. doi: 10.1016/j.smim.2021.101480.
|
4. |
Zhao Y, Harrison DL, Song Y, et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep, 2018, 24(2): 379-390.
|
5. |
Cai J, Wang D, Zhang G, et al. The role of PD-1/PD-L1 axis in Treg development and function: Implications for cancer immunotherapy. Onco Targets Ther, 2019, 12: 8437-8445.
|
6. |
Darvin P, Toor SM, Sasidharan Nair V, et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med, 2018, 50(12): 1-11.
|
7. |
Le DT, Kim TW, Van Cutsem E, et al. Phase Ⅱ open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol, 2020, 38(1): 11-19.
|
8. |
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol, 2017, 18(9): 1182-1191.
|
9. |
FDA grants nivolumab accelerated approval for MSI-H or dMMR colorectal cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approval-msi-h-or-dmmr-colorectal-cancer.
|
10. |
FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication.
|
11. |
Kalyan A, Kircher S, Shah H, et al. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol, 2018, 9(1): 160-169.
|
12. |
Lin KX, Istl AC, Quan D, et al. PD-1 and PD-L1 inhibitors in cold colorectal cancer: challenges and strategies. Cancer Immunol Immunother, 2023, 72(12): 3875-3893.
|
13. |
Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev, 2004, 23(1-2): 11-27.
|
14. |
de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol, 2010, 28(20): 3380-3387.
|
15. |
Li YC, Korol AB, Fahima T, et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol, 2002, 11(12): 2453-2465.
|
16. |
Olave MC, Graham RP. Mismatch repair deficiency: The what, how and why it is important. Genes Chromosomes Cancer, 2022, 61(6): 314-321.
|
17. |
Losso GM, Moraes Rda S, Gentili AC, et al. Microsatellite instability—MSI markers (BAT26, BAT25, D2S123, D5S346, D17S250) in rectal cancer. Arq Bras Cir Dig, 2012, 25(4): 240-244.
|
18. |
Cohen R, Rousseau B, Vidal J, et al. Immune checkpoint inhibition in colorectal cancer: Microsatellite instability and beyond. Target Oncol, 2020, 15(1): 11-24.
|
19. |
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov, 2015, 5(1): 43-51.
|
20. |
Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep, 2016, 15(4): 857-865.
|
21. |
Wu M, Zheng D, Zhang D, et al. Converting immune cold into hot by biosynthetic functional vesicles to boost systematic antitumor immunity. iScience, 2020, 23(7): 101341. doi: 10.1016/j.isci.2020.101341.
|
22. |
Loddenkemper C, Nagorsen D, Zeitz M. Foxp3 and microsatellite stability phenotype in colorectal cancer. Gut, 2008, 57(6): 725-726.
|
23. |
Grasso CS, Giannakis M, Wells DK, et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov, 2018, 8(6): 730-749.
|
24. |
Bonaventura P, Shekarian T, Alcazer V, et al. Cold tumors: A therapeutic challenge for immunotherapy. Front Immunol, 2019, 10: 168. doi: 10.3389/fimmu.2019.00168.
|
25. |
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1): 1-10.
|
26. |
Mellman I, Chen DS, Powles T, et al. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity, 2023, 56(10): 2188-2205.
|
27. |
Syed Khaja AS, Toor SM, El Salhat H, et al. Intratumoral FoxP3+helios+ regulatory T cells upregulating immunosuppressive molecules are expanded in human colorectal cancer. Front Immunol, 2017, 8: 619. doi: 10.3389/fimmu.2017.00619.
|
28. |
Oura K, Morishita A, Tani J, et al. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci, 2021, 22(11): 5801. doi: 10.3390/ijms22115801.
|
29. |
Lv B, Wang Y, Ma D, et al. Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol, 2022, 13: 844142. doi: 10.3389/fimmu.2022.844142.
|
30. |
Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med, 2015, 212(2): 139-148.
|
31. |
Mempel TR, Lill JK, Altenburger LM. How chemokines organize the tumour microenvironment. Nat Rev Cancer, 2024, 24(1): 28-50.
|
32. |
Ebert PJR, Cheung J, Yang Y, et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity, 2016, 44(3): 609-621.
|
33. |
Ferguson SD, Srinivasan VM, Heimberger AB. The role of STAT3 in tumor-mediated immune suppression. J Neurooncol, 2015, 123(3): 385-394.
|
34. |
Chow A, Perica K, Klebanoff CA, et al. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol, 2022, 19(12): 775-790.
|
35. |
Opzoomer JW, Sosnowska D, Anstee JE, et al. Cytotoxic chemotherapy as an immune stimulus: a molecular perspective on turning up the immunological heat on cancer. Front Immunol, 2019, 10: 1654. doi: 10.3389/fimmu.2019.01654.
|
36. |
Krombach J, Hennel R, Brix N, et al. Priming anti-tumor immunity by radiotherapy: Dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology, 2018, 8(1): e1523097. doi: 10.1080/2162402X.2018.1523097.
|
37. |
McLaughlin M, Patin EC, Pedersen M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer, 2020, 20(4): 203-217.
|
38. |
Schmidt EV, Chisamore MJ, Chaney MF, et al. Assessment of clinical activity of PD-1 checkpoint inhibitor combination therapies reported in clinical trials. JAMA Netw Open, 2020, 3(2): e1920833. doi: 10.1001/jamanetworkopen.2019.20833.
|
39. |
Lee WS, Yang H, Chon HJ, et al. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med, 2020, 52(9): 1475-1485.
|
40. |
Lanitis E, Irving M, Coukos G. Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol, 2015, 33: 55-63.
|
41. |
Fisher DT, Chen Q, Skitzki JJ, et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest, 2011, 121(10): 3846-3859.
|
42. |
Barsoum IB, Smallwood CA, Siemens DR, et al. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res, 2014, 74(3): 665-674.
|
43. |
Chen J, Jiang CC, Jin L, et al. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol, 2016, 27(3): 409-416.
|
44. |
Facciabene A, Peng X, Hagemann IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 2011, 475(7355): 226-230.
|
45. |
Movahedi K, Laoui D, Gysemans C, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6Chigh monocytes. Cancer Res, 2010, 70(14): 5728-5739.
|
46. |
Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol, 2018 Dec 20: 9: 3059. doi: 10.3389/fimmu.2018.03059.
|
47. |
Terme M, Pernot S, Marcheteau E, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res, 2013, 73(2): 539-549.
|
48. |
Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol, 2018, 9: 978. doi: 10.3389/fimmu.2018.00978.
|
49. |
Kim CG, Jang M, Kim Y, et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci Immunol, 2019, 4(41): eaay0555. doi: 10.1126/sciimmunol.aay0555.
|
50. |
Doleschel D, Hoff S, Koletnik S, et al. Regorafenib enhances anti-PD1 immunotherapy efficacy in murine colorectal cancers and their combination prevents tumor regrowth. J Exp Clin Cancer Res, 2021, 40(1): 288. doi: 10.1186/s13046-021-02043-0.
|
51. |
Fiegle E, Doleschel D, Koletnik S, et al. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse model of colon cancer. Neoplasia, 2019, 21(9): 932-944.
|
52. |
Zhou K, Zhang JW, Wang QZ, et al. Apatinib, a selective VEGFR2 inhibitor, improves the delivery of chemotherapeutic agents to tumors by normalizing tumor vessels in LoVo colon cancer xenograft mice. Acta Pharmacol Sin, 2019, 40(4): 556-562.
|
53. |
Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med, 2020, 382(20): 1894-1905.
|
54. |
Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med, 2018, 378(24): 2288-2301.
|
55. |
Rini BI, Powles T, Atkins MB, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet, 2019, 393(10189): 2404-2415.
|
56. |
Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med, 2019, 380(12): 1116-1127.
|
57. |
Bendell JC, Powderly JD, Lieu CH, et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol, 2015, 33(3_suppl): 704. doi: 10.1200/jco.2015.33.3_suppl.704.
|
58. |
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ⅰb trial (REGONIVO, EPOC1603). J Clin Oncol, 2020, 38(18): 2053-2061.
|
59. |
Bocobo AG, Wang R, Behr S, et al. Phase Ⅱ study of pembrolizumab plus capecitabine and bevacizumab in microsatellite stable (MSS) metastatic colorectal cancer (mCRC): Interim analysis. J Clin Oncol, 2021, 39(3_suppl): 77. doi: 10.1200/JCO.2021.39.3_suppl.77.
|
60. |
Antoniotti C, Rossini D, Pietrantonio F, et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol, 2022, 23(7): 876-887.
|
61. |
Mettu NB, Ou FS, Zemla TJ, et al. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer: a randomized clinical trial. JAMA Netw Open, 2022, 5(2): e2149040. doi: 10.1001/jamanetworkopen.2021.49040.
|
62. |
Fakih M, Raghav KPS, Chang DZ, et al. Regorafenib plus nivolumab in patients with mismatch repair-proficient/microsatellite stable metastatic colorectal cancer: a single-arm, open-label, multicentre phase 2 study. EClinicalMedicine, 2023, 58: 101917. doi: 10.1016/j.eclinm.2023.101917.
|
63. |
Wang F, He M, Yao Y, et al. 433P A phase Ⅰb/Ⅱ clinical trial of tolerability, safety and efficacy of regorafenib in combination with toripalimab (a PD-1 antibody) in patients with relapsed or metastatic colorectal cancer. Ann Oncol, 2020, 31(Suppl 4): S409-S461. doi: 10.1016/annonc/annonc270.
|
64. |
Wang C, Chevalier D, Saluja J, et al. Regorafenib and nivolumab or pembrolizumab combination and circulating tumor DNA response assessment in refractory microsatellite stable colorectal cancer. Oncologist, 2020, 25(8): e1188-e1194. doi: 10.1634/theoncologist.2020-0161.
|
65. |
Li J, Cong L, Liu J, et al. The efficacy and safety of regorafenib in combination with anti-PD-1 antibody in refractory microsatellite stable metastatic colorectal cancer: a retrospective study. Front Oncol, 2020, 10: 594125. doi: 10.3389/fonc.2020.594125.
|
66. |
Cousin S, Cantarel C, Guegan JP, et al. Regorafenib-avelumab combination in patients with microsatellite stable colorectal cancer (REGOMUNE): a single-arm, open-label, phase Ⅱtrial. Clin Cancer Res, 2021, 27(8): 2139-2147.
|
67. |
Xiao L, Zhang Y, Lin Q. 442P Camrelizumab combined with apatinib in the treatment of patients with advanced gastric cancer and colorectal cancer: one-arm exploratory clinical trial. Ann Oncol, 2020, 31: S429. doi: 10.1016/j.annonc.2020.08.553.
|
68. |
Dasari A, Lonardi S, Garcia-Carbonero R, et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): an international, multicentre, randomised, double-blind, phase 3 study. Lancet, 2023, 402(10395): 41-53.
|