1. |
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin, 2024, 74(1): 12-49.
|
2. |
Zeng X, Ward SE, Zhou J, et al. Liver immune microenvironment and metastasis from colorectal cancer—pathogenesis and therapeutic perspectives. Cancers (Basel), 2021, 13(10): 2418. doi: 10.3390/cancers13102418.
|
3. |
Vilar E, Gruber SB. Microsatellite instability in colorectal cancer—the stable evidence. Nat Rev Clin Oncol, 2010, 7(3): 153-162.
|
4. |
Cohen R, Hain E, Buhard O, et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol, 2019, 5(4): 551-555.
|
5. |
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349): 409-413.
|
6. |
Pang K, Shi ZD, Wei LY, et al. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat, 2023, 66: 100907. doi: 10.1016/j.drup.2022.100907.
|
7. |
米迷, 翁姗姗, 陆德珉, 等. 2021年晚期结直肠癌治疗研究进展. 实用肿瘤杂志, 2022, 37(1): 23-28.
|
8. |
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med, 2020, 383(23): 2207-2218.
|
9. |
Saberzadeh-Ardestani B, Jones JC, Hubbard JM, et al. Association between survival and metastatic site in mismatch repair-deficient metastatic colorectal cancer treated with first-line pembrolizumab. JAMA Netw Open, 2023, 6(2): e230400. doi: 10.1001/jamanetworkopen.2023.0400.
|
10. |
Mazzoli G, Cohen R, Lonardi S, et al. Prognostic impact of performance status on the outcomes of immune checkpoint inhibition strategies in patients with dMMR/MSI-H metastatic colorectal cancer. Eur J Cancer, 2022, 172: 171-181.
|
11. |
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018, 24(5): 541-550.
|
12. |
Angelova M, Charoentong P, Hackl H, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol, 2015, 16(1): 64. doi: 10.1186/s13059-015-0620-6.
|
13. |
Nebot-Bral L, Hollebecque A, Yurchenko AA, et al. Overcoming resistance to αPD-1 of MMR-deficient tumors with high tumor-induced neutrophils levels by combination of αCTLA-4 and αPD-1 blockers [published correction appears in J Immunother Cancer. 2022 Aug;10(8): ]. J Immunother Cancer, 2022, 10(7): e005059. doi:10.1136/jitc-2022-005059.
|
14. |
Ott PA, Hodi FS, Kaufman HL, et al. Combination immunotherapy: a road map. J Immunother Cancer, 2017, 5: 16. doi: 10.1186/s40425-017-0218-5.
|
15. |
Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase Ⅱ CheckMate 142 study. J Clin Oncol, 2022, 40(2): 161-170.
|
16. |
André T, Elez E, Van Cutsem E, et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): first results of the CheckMate 8HW study. J Clin Oncol, 2024, 42(suppl 3): LBA768. doi:10.1200/JCO.2024.42.3_suppl.LBA768.
|
17. |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med, 2015, 372(26): 2509-2520.
|
18. |
Le DT, Kim TW, Van Cutsem E, et al. Phase Ⅱ open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol, 2020, 38(1): 11-19.
|
19. |
Diaz L, Le DT, Kim TW, et al. Pembrolizumab monotherapy for patients with advanced MSI-H colorectal cancer: longer-term follow-up of the phase Ⅱ, KEYNOTE-164 study. J Clin Oncol, 2020, 38(15_suppl): 4032. doi: 10.1200/JCO.2020.38.15_suppl.4032.
|
20. |
Marcus L, Lemery SJ, Keegan P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res, 2019, 25(13): 3753-3758.
|
21. |
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol, 2017, 18(9): 1182-1191.
|
22. |
Cohen R, Bennouna J, Meurisse A, et al. RECIST and iRECIST criteria for the evaluation of nivolumab plus ipilimumab in patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the GERCOR NIPICOL phase Ⅱ study. J Immunother Cancer, 2020, 8(2): e001499. doi: 10.1136/jitc-2020-001499.
|
23. |
Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol, 2018, 36(8): 773-779.
|
24. |
Tie J, Gibbs P, Lipton L, et al. Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAFV600E mutation. Int J Cancer, 2011, 128(9): 2075-2084.
|
25. |
Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res, 2014, 20(20): 5322-5330.
|
26. |
Corcoran RB, André T, Yoshino T, et al. Efficacy and circulating tumor DNA (ctDNA) analysis of the BRAF inhibitor dabrafenib (D), MEK inhibitor trametinib (T), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E–mutated (BRAFm) metastatic colorectal cancer (mCRC). Ann Oncol, 2016, 27(suppl_6): vi149. doi: 10.1093/annonc/mdw370.04.
|
27. |
Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol, 2008, 26(35): 5705-5712.
|
28. |
Colle R, Lonardi S, Cachanado M, et al. BRAFV600E/RAS mutations and lynch syndrome in patients with MSI-H/dMMR metastatic colorectal cancer treated with immune checkpoint inhibitors. Oncologist, 2023, 28(9): 771-779.
|
29. |
André T, Lonardi S, Wong KYM, et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann Oncol, 2022, 33(10): 1052-1060.
|
30. |
Martinelli E, Arnold D, Cervantes A, et al. European expert panel consensus on the clinical management of BRAFV600E-mutant metastatic colorectal cancer. Cancer Treat Rev, 2023, 115: 102541. doi: 10.1016/j.ctrv.2023.102541.
|
31. |
Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol, 2008, 26(10): 1626-1634.
|
32. |
Lièvre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol, 2008, 26(3): 374-379.
|
33. |
Zhang C, Li D, Xiao B, et al. B2M and JAK1/2-mutated MSI-H colorectal carcinomas can benefit from anti-PD-1 therapy. J Immunother, 2022, 45(4): 187-193.
|
34. |
中国临床肿瘤学会(CSCO)结直肠癌专家委员会. 结直肠癌分子标志物临床检测中国专家共识. 中华胃肠外科杂志, 2021, 24(3): 191-197.
|
35. |
André T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med, 2004, 350(23): 2343-2351.
|
36. |
Taieb J, Tabernero J, Mini E, et al. Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage Ⅲ colon cancer (PETACC-8): an open-label, randomised phase 3 trial. Lancet Oncol, 2014, 15(8): 862-873.
|
37. |
Zhang X, Wu T, Cai X, et al. Neoadjuvant immunotherapy for MSI-H/dMMR locally advanced colorectal cancer: new strategies and unveiled opportunities. Front Immunol, 2022, 13: 795972. doi: 10.3389/fimmu.2022.795972.
|
38. |
Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science, 2020, 367(6477): eaax0182. doi: 10.1126/science.aax0182.
|
39. |
Verschoor YL, van den Berg J, Beets G, et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: final clinical analysis of the NICHE study. J Clin Oncol, 2022, 40(16_suppl): 3511. doi: 10.1200/JCO.2022.40.16_suppl.3511.
|
40. |
Chalabi M, Verschoor YL, van den Berg J, et al. LBA7 Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: the NICHE-2 study. Ann Oncol, 2022, 33(Suppl 7): S808-S869. doi: 10.1016/annonc/annonc1089.
|
41. |
Verschoor YL, Van Den Berg J, Balduzzi S, et al. LBA31 neoadjuvant nivolumab plus relatlimab (anti-LAG3) in locally advanced MMR-deficient colon cancers: The NICHE-3 study. Ann Oncol, 2023, 34: S1270. doi: 10.1016/j.annonc.2023.10.023.
|
42. |
Hu H, Kang L, Zhang J, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48.
|
43. |
Yuki S, Bando H, Tsukada Y, et al. Shortterm results of VOLTAGE-A: nivolumab monotherapy and subsequent radical surgery following preoperative chemoradiotherapy in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer. J Clin Oncol, 2020, 38(15_suppl): 4100. doi: 10.1200/JCO.2020.38.15_suppl.4100.
|
44. |
Zhang X, Yang R, Wu T, et al. Efficacy and safety of neoadjuvant monoimmunotherapy with PD-1 inhibitor for dMMR/MSI-H locally advanced colorectal cancer: a single-center real-world study. Front Immunol, 2022, 13: 913483. doi: 10.3389/fimmu.2022.913483.
|
45. |
Pei F, Wu J, Zhao Y, et al. Single-agent neoadjuvant immunotherapy with a PD-1 antibody in locally advanced mismatch repair-deficient or microsatellite instability-high colorectal cancer. Clin Colorectal Cancer, 2023, 22(1): 85-91.
|
46. |
Diaz LA, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol, 2022, 23(5): 659-670.
|
47. |
Garcia-Aguilar J, Chow OS, Smith DD, et al. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial. Lancet Oncol, 2015, 16(8): 957-966.
|
48. |
Rahma OE, Yothers G, Hong TS, et al. Use of total neoadjuvant therapy for locally advanced rectal cancer: initial results from the pembrolizumab arm of a phase 2 randomized clinical trial. JAMA Oncol, 2021, 7(8): 1225-1230.
|
49. |
McKenna NP, Bews KA, Yost KJ, et al. Bowel dysfunction after low anterior resection for colorectal cancer: a frequent late effect of surgery infrequently treated. J Am Coll Surg, 2022, 234(4): 529-537.
|
50. |
Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med, 2022, 386(25): 2363-2376.
|
51. |
Andre T, Shiu K-K, Kim TW, et al. Final overall survival for the phase Ⅲ KN177 study: pembrolizumab versus chemotherapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). J Clin Oncol, 2021, 39(15_suppl): 3500. doi: 10.1200/JCO.2021.39.15_suppl.3500.
|
52. |
Xiao BY, Zhang X, Cao TY, et al. Neoadjuvant immunotherapy leads to major response and low recurrence in localized mismatch repair-deficient colorectal cancer. J Natl Compr Canc Netw, 2023, 21(1): 60-66.
|
53. |
Blank CU, Rozeman EA, Fanchi LF, et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage Ⅲ melanoma. Nat Med, 2018, 24(11): 1655-1661.
|
54. |
Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med, 2019, 25(3): 477-486.
|
55. |
Chen G, Jin Y, Guan WL, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431.
|
56. |
Wang QX, Xiao BY, Cheng Y, et al. Anti-PD-1-based immunotherapy as curative-intent treatment in dMMR/MSI-H rectal cancer: a multicentre cohort study. Eur J Cancer, 2022, 174: 176-184.
|
57. |
Mo S, Ma X, Li Y, et al. Somatic POLE exonuclease domain mutations elicit enhanced intratumoral immune responses in stage Ⅱ colorectal cancer. J Immunother Cancer, 2020, 8(2): e000881. doi: 10.1136/jitc-2020-000881.
|
58. |
Watson N, Grieu F, Morris M, et al. Heterogeneous staining for mismatch repair proteins during population-based prescreening for hereditary nonpolyposis colorectal cancer. J Mol Diagn, 2007, 9(4): 472-478.
|
59. |
Chen ML, Chen JY, Hu J, et al. Comparison of microsatellite status detection methods in colorectal carcinoma. Int J Clin Exp Pathol, 2018, 11(3): 1431-1438.
|