1. |
何林烨, 王艺超, 李志辉. 2022年中国甲状腺癌流行情况分析: 基于《中国肿瘤登记年报》2005–2018年数据. 中国普外基础与临床杂志, 2024, 31(7): 790-795.
|
2. |
Machlowska J, Baj J, Sitarz M, et al. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci, 2020, 21(11): 4012. doi: 10.3390/ijms21114012.
|
3. |
Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol, 2020, 18(3): 534-542.
|
4. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
5. |
Liu X, Meltzer SJ. Gastric cancer in the era of precision medicine. Cell Mol Gastroenterol Hepatol, 2017, 3(3): 348-358.
|
6. |
Wang Y, Zhang L, Yang Y, et al. Progress of gastric cancer surgery in the era of precision medicine. Int J Biol Sci, 2021, 17(4): 1041-1049.
|
7. |
Matsuoka T, Yashiro M. Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol, 2020, 12(1): 1-20.
|
8. |
Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future perspectives. J Hematol Oncol, 2023, 16(1): 57.
|
9. |
Li A, Walling J, Kotliarov Y, et al. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res, 2008, 6(1): 21-30.
|
10. |
Gillet JP, Calcagno AM, Varma S, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A, 2011, 108(46): 18708-18713.
|
11. |
Veninga V, Voest EE. Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell, 2021, 39(9): 1190-1201.
|
12. |
Wang W, Li Y, Lin K, et al. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med, 2023, 6(5): 381-398.
|
13. |
Tentler JJ, Tan AC, Weekes CD, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol, 2012, 9(6): 338-350.
|
14. |
Waseem M, Wang BD. Organoids: An emerging precision medicine model for prostate cancer research. Int J Mol Sci, 2024, 25(2): 1093. doi: 10.3390/ijms25021093.
|
15. |
Song X, Hou K, Zhou H, et al. Liver organoids and their application in liver cancer research. Regen Ther, 2023, 25: 128-137.
|
16. |
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018, 18(7): 407-418.
|
17. |
Xu H, Jiao D, Liu A, et al. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol, 2022, 15(1): 58. doi: 10.1186/s13045-022-01278-4.
|
18. |
周永杰, 石毓君. 类器官研究进展及展望. 中国普外基础与临床杂志, 2022, 29(6): 716-718.
|
19. |
Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol, 2020, 13(1): 4. doi: 10.1186/s13045-019-0829-z.
|
20. |
Ramos Zapatero M, Tong A, Opzoomer JW, et al. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell, 2023, 186(25): 5606-5619.
|
21. |
Kang Y, Deng J, Ling J, et al. 3D imaging analysis on an organoid-based platform guides personalized treatment in pancreatic ductal adenocarcinoma. J Clin Invest, 2022, 132(24): e151604. doi: 10.1172/JCI151604.
|
22. |
Li G, Ma S, Wu Q, et al. Establishment of gastric signet ring cell carcinoma organoid for the therapeutic drug testing. Cell Death Discov, 2022, 8(1): 6. doi: 10.1038/s41420-021-00803-7.
|
23. |
Yan HHN, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell, 2018, 23(6): 882-897.
|
24. |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359(6378): 920-926.
|
25. |
Gao M, Lin M, Rao M, et al. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues. Ann Surg Oncol, 2018, 25(9): 2767-2775.
|
26. |
Steele NG, Chakrabarti J, Wang J, et al. An organoid-based preclinical model of human gastric cancer. Cell Mol Gastroenterol Hepatol, 2019, 7(1): 161-184.
|
27. |
Li J, Xu H, Zhang L, et al. Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J Cancer Res Clin Oncol, 2019, 145(11): 2637-2647.
|
28. |
Song H, Park JY, Kim JH, et al. Establishment of patient-derived gastric cancer organoid model from tissue obtained by endoscopic biopsies. J Korean Med Sci, 2022, 37(28): e220. doi: 10.3346/jkms.2022.37.e220.
|
29. |
Zu M, Hao X, Ning J, et al. Patient-derived organoid culture of gastric cancer for disease modeling and drug sensitivity testing. Biomed Pharmacother, 2023, 163: 114751. doi: 10.1016/j.biopha.2023.114751.
|
30. |
McDonald HG, Harper MM, Hill K, et al. Creation of EGD-derived gastric cancer organoids to predict treatment responses. Cancers (Basel), 2023, 15(11): 3036.
|
31. |
Xu J, Gong J, Li M, et al. Gastric cancer patient-derived organoids model for the therapeutic drug screening. Biochim Biophys Acta Gen Subj, 2024, 1868(4): 130566. doi: 10.1016/j.bbagen.2024.130566.
|
32. |
Schmäche T, Fohgrub J, Klimova A, et al. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Mol Cancer, 2024, 23(1): 10. doi: 10.1186/s12943-023-01919-3.
|
33. |
Zhao Y, Li S, Zhu L, et al. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med, 2024, 5(7): 101627. doi: 10.1016/j.xcrm.2024.101627.
|
34. |
Li X, Nadauld L, Ootani A, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med, 2014, 20(7): 769-777.
|
35. |
Li X, Ootani A, Kuo C. An air-liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods Mol Biol, 2016, 1422: 33-40.
|
36. |
Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell, 2018, 175(7): 1972-1988.
|
37. |
Chakrabarti J, Holokai L, Syu L, et al. Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment. Methods Mol Biol, 2018, 1817: 157-168.1817-1157.
|
38. |
Chakrabarti J, Koh V, Steele N, et al. Disruption of Her2-Induced PD-L1 Inhibits Tumor Cell Immune Evasion in Patient-Derived Gastric Cancer Organoids. Cancers (Basel), 2021, 13(24): 6158.
|
39. |
中国抗癌协会肿瘤多学科诊疗专业委员会, 中国抗癌协会肿瘤内分泌专业委员会. 肿瘤类器官诊治平台的质量控制标准中国专家共识(2022年版). 中国癌症杂志, 2022, 32(7): 657-668.
|
40. |
Abdolahi S, Ghazvinian Z, Muhammadnejad S, et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med, 2022, 20(1): 206.
|
41. |
Okada S, Vaeteewoottacharn K, Kariya R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models J. Cells, 2019, 8 (8).
|
42. |
Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov, 2014, 4(9): 998-1013.
|
43. |
Liu Y, Wu W, Cai C, et al. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther, 2023, 8(1): 160.
|
44. |
Murayama T, Gotoh N. Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells, 2019, 8(6): 621.
|
45. |
Byrne AT, Alférez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer, 2017, 17(4): 254-268.
|
46. |
Tian H, Lyu Y, Yang YG, et al. Humanized Rodent Models for Cancer Research. Front Oncol, 2020 Sep 11: 10: 1696.
|
47. |
Perova Z, Martinez M, Mandloi T, et al. PDCM Finder: an open global research platform for patient-derived cancer models. Nucleic Acids Res, 2023, 51(D1): D1360-D1366.1360-1366.
|
48. |
Jin J, Xu Y, Huo L, et al. An improved strategy for CRISPR/Cas9 gene knockout and subsequent wildtype and mutant gene rescue. PLoS One, 2020, 15(2): e0228910.
|
49. |
Jin J, Yoshimura K, Sewastjanow-Silva M, et al. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers (Basel), 2023, 15(17): 4352.
|
50. |
Busuttil RA, Liu DS, Di Costanzo N, et al. An orthotopic mouse model of gastric cancer invasion and metastasis. Sci Rep, 2018, 8(1): 825.
|
51. |
Giraud J, Bouriez D, Seeneevassen L, et al. Orthotopic Patient-Derived Xenografts of Gastric Cancer to Decipher Drugs Effects on Cancer Stem Cells and Metastatic Dissemination. Cancers (Basel), 2019, 11(4): 560.
|
52. |
Wang H, Lu J, Tang J, et al. Establishment of patient-derived gastric cancer xenografts: a useful tool for preclinical evaluation of targeted therapies involving alterations in HER-2, MET and FGFR2 signaling pathways. BMC Cancer, 2017, 17(1): 191.
|
53. |
Moy RH, Walch HS, Mattar M, et al. Defining and Targeting Esophagogastric Cancer Genomic Subsets With Patient-Derived Xenografts. JCO Precis Oncol, 2022 Feb: 6: e2100242.
|
54. |
Yagishita S, Kato K, Takahashi M, et al. Characterization of the large-scale Japanese patient-derived xenograft (J-PDX) library. Cancer Sci, 2021, 112(6): 2454-2466.
|
55. |
Kuwata T, Yanagihara K, Iino Y, et al. Establishment of Novel Gastric Cancer Patient-Derived Xenografts and Cell Lines: Pathological Comparison between Primary Tumor, Patient-Derived, and Cell-Line Derived Xenografts. Cells, 2019, 8(6): 585.
|
56. |
Chen Z, Huang W, Tian T, et al. Characterization and validation of potential therapeutic targets based on the molecular signature of patient-derived xenografts in gastric cancer. J Hematol Oncol, 2018, 11(1): 20.
|
57. |
Sprouffske K, Kerr G, Li C, et al. Genetic heterogeneity and clonal evolution during metastasis in breast cancer patient-derived tumor xenograft models. Comput Struct Biotechnol J, 2020 Jan 31: 18: 323-331.18-323.
|
58. |
Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet, 2017, 49(11): 1567-1575.
|
59. |
Blomme A, Van Simaeys G, Doumont G, et al. Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene, 2018, 37(9): 1237-1250.
|
60. |
Yuan Z, Fan X, Zhu JJ, et al. Presence of complete murine viral genome sequences in patient-derived xenografts. Nat Commun, 2021, 12(1): 2031.
|
61. |
Zhang L, Liu Y, Wang X, et al. The extent of inflammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Sci Rep, 2015 Mar 30: 5: 9447.
|
62. |
Khandelwal G, Girotti MR, Smowton C, et al. Next-Generation Sequencing Analysis and Algorithms for PDX and CDX Models. Mol Cancer Res, 2017, 15(8): 1012-1016.
|
63. |
Shah PK, Herrera-Loeza SG, Sims CE, et al. Small sample sorting of primary adherent cells by automated micropallet imaging and release. Cytometry A, 2014, 85(7): 642-649.
|
64. |
Huang L, Bockorny B, Paul I, et al. PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight, 2020, 5(21): e135544. doi: 10.1172/jci.insight.135544.
|
65. |
Guillen KP, Fujita M, Butterfield AJ, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer, 2022, 3(2): 232-250.
|
66. |
Aoyama J, Nojima Y, Sano D, et al. Effect of HER2-targeted therapy on PDX and PDX-derived organoids generated from HER2-positive salivary duct carcinoma. Head Neck, 2023, 45(7): 1801-1811.
|
67. |
Van Hemelryk A, Tomljanovic I, de Ridder CMA, et al. Patient-derived xenografts and organoids recapitulate castration-resistant prostate cancer with sustained androgen receptor signaling. Cells, 2022, 11(22): 3632. doi: 10.3390/cells11223632.
|
68. |
Sengal AT, Bonazzi V, Smith D, et al. Endometrial cancer PDX-derived organoids (PDXOs) and PDXs with FGFR2c isoform expression are sensitive to FGFR inhibition. NPJ Precis Oncol, 2023, 7(1): 127. doi: 10.1038/s41698-023-00478-6.
|
69. |
Flores-Torres S, Peza-Chavez O, Kuasne H, et al. Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Biofabrication, 2021, 13(2). doi: 10.1088/1758-5090/abdb87.
|
70. |
Ayuso JM, Virumbrales-Muñoz M, Lang JM, et al. A role for microfluidic systems in precision medicine. Nat Commun, 2022, 13(1): 3086. doi: 10.1038/s41467-022-30384-7.
|
71. |
Ukai S, Honma R, Sakamoto N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell. Oncogene, 2020, 39(50): 7265-7278.
|
72. |
Seidlitz T, Stange DE. Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med, 2021, 53(10): 1459-1470.
|
73. |
Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer, 2019, 19(2): 65-81.
|
74. |
Monteduro AG, Rizzato S, Caragnano G, et al. Organs-on-chips technologies—A guide from disease models to opportunities for drug development. Biosens Bioelectron, 2023, 231: 115271. doi: 10.1016/j.bios.2023.115271.
|
75. |
Zhang Y, Hu Q, Pei Y, et al. A patient-specific lung cancer assembloid model with heterogeneous tumor microenvironments. Nat Commun, 2024, 15(1): 3382.
|
76. |
Xu X, Gao Y, Dai J, et al. Gastric cancer assembloids derived from patient-derived xenografts: A preclinical model for therapeutic drug screening. Small Methods, 2024 Jul 1: e2400204. doi: 10.1002/smtd.202400204.
|