1. |
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology, 2023, 77(5): 1773-1796.
|
2. |
郝运, 李川, 文天夫, 等. 全球及中国的肝癌流行病学特征: 基于《2022全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(7): 781-789.
|
3. |
姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
|
4. |
何坤, 高孝锦, 谢梦忆, 等. 着丝粒蛋白家族对肝癌恶性生物学行为调节的研究进展. 中国普外基础与临床杂志, 2024, 31(6): 761-768.
|
5. |
West EE, Woodruff T, Fremeaux-Bacchi V, et al. Complement in human disease: approved and up-and-coming therapeutics. Lancet, 2024, 403(10424): 392-405.
|
6. |
Markiewski MM, DeAngelis RA, Benencia F, et al. Modulation of the antitumor immune response by complement. Nat Immunol, 2008, 9(11): 1225-1235.
|
7. |
Zhang R, Liu Q, Li T, et al. Role of the complement system in the tumor microenvironment. Cancer Cell Int, 2019, 19: 300.
|
8. |
Bandini S, Macagno M, Hysi A, et al. The non-inflammatory role of C1q during Her2/neu-driven mammary carcinogenesis. Oncoimmunology, 2016, 5(12): e1253653. doi: 10.1080/2162402X.2016.1253653.
|
9. |
Bulla R, Tripodo C, Rami D, Ling GS, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun, 2016, 7: 10346. doi: 10.1038/ncomms10346.
|
10. |
Reis ES, Mastellos DC, Hajishengallis G, et al. New insights into the immune functions of complement. Nat Rev Immunol, 2019, 19(8): 503-516.
|
11. |
Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood, 2019, 133(20): 2159-2167.
|
12. |
He G, Yu GY, Temkin V, et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell, 2010, 17(3): 286-297.
|
13. |
徐令东, 徐逸帆, 张飞, 等. 肝炎病毒感染导致肝细胞癌发生的免疫机制研究进展. 浙江大学学报(医学版), 2024, 53(1): 64-72.
|
14. |
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front Immunol, 2020, 11: 940.
|
15. |
Xing M, Li J. A new inflammation-related risk model for predicting hepatocellular carcinoma prognosis. Biomed Res Int, 2022, 2022: 5396128. doi: 10.1155/2022/5396128.
|
16. |
Xiao Z, Yeung CLS, Yam JWP, et al. An update on the role of complement in hepatocellular carcinoma. Front Immunol, 2022, 13: 1007382. doi: 10.3389/fimmu.2022.1007382.
|
17. |
Herbert A. Complement controls the immune synapse and tumors control complement. J Immunother Cancer, 2020, 8(2): e001712. doi: 10.1136/jitc-2020-001712.
|
18. |
Rutkowski MJ, Sughrue ME, Kane AJ, et al. Cancer and the complement cascade. Mol Cancer Res, 2010, 8(11): 1453-1465.
|
19. |
Arlaud GJ, Gaboriaud C, Thielens NM, et al. Structural biology of C1: dissection of a complex molecular machinery. Immunol Rev, 2001, 180: 136-145.
|
20. |
Yu H, Yan X, Chen G, et al. Dynamic network biomarker C1QTNF1 regulates tumor formation at the tipping point of hepatocellular carcinoma. Biomol Biomed, 2024, 24(4): 939-951.
|
21. |
Wan X, Zheng C, Dong L. Inhibition of CTRP6 prevented survival and migration in hepatocellular carcinoma through inactivating the AKT signaling pathway. J Cell Biochem, 2019, 120(10): 17059-17066.
|
22. |
Lee JH, Poudel B, Ki HH, et al. Complement C1q stimulates the progression of hepatocellular tumor through the activation of discoidin domain receptor 1. Sci Rep, 2018, 8(1): 4908. doi: 10.1038/s41598-018-23240-6.
|
23. |
Ho TC, Wang EY, Yeh KH, et al. Complement C1q mediates the expansion of periportal hepatic progenitor cells in senescence-associated inflammatory liver. Proc Natl Acad Sci U S A, 2020, 117(12): 6717-6725.
|
24. |
Weber JS, Sznol M, Sullivan RJ, et al. A serum protein signature associated with outcome after anti-PD-1 Therapy in metastatic melanoma. Cancer Immunol Res, 2018, 6(1): 79-86.
|
25. |
Pio R, Ajona D, Lambris JD. Complement inhibition in cancer therapy. Semin Immunol, 2013, 25(1): 54-64.
|
26. |
Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun, 2010, 34(3): J276-J286. doi: 10.1016/j.jaut.2009.11.014.
|
27. |
Xu Y, Huang Y, Xu W, et al. Activated hepatic stellate cells (HSCs) exert immunosuppressive effects in hepatocellular carcinoma by producing complement C3. Onco Targets Ther, 2020, 13: 1497-1505.
|
28. |
Hsieh CC, Chou HS, Yang HR, et al. The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood, 2013, 121(10): 1760-1768.
|
29. |
Lu LC, Chang CJ, Hsu CH. Targeting myeloid-derived suppressor cells in the treatment of hepatocellular carcinoma: current state and future perspectives. J Hepatocell Carcinoma, 2019, 6: 71-84.
|
30. |
Malik A, Thanekar U, Amarachintha S, et al. “Complimenting the complement”: Mechanistic insights and opportunities for therapeutics in hepatocellular carcinoma. Front Oncol, 2021, 10: 627701. doi: 10.3389/fonc.2020.627701 Ther, 2021, 6(1): 404.
|
31. |
Worthley DL, Bardy PG, Gordon DL, et al. Mannose-binding lectin and maladies of the bowel and liver. World J Gastroenterol, 2006, 12(40): 6420-6428.
|
32. |
Kalia N, Singh J, Kaur M. The ambiguous role of mannose-binding lectin (MBL) in human immunity. Open Med (Wars), 2021, 16(1): 299-310.
|
33. |
Liao H, Yang J, Xu Y, et al. Mannose-binding lectin 2 as a potential therapeutic target for hepatocellular carcinoma: multi-omics analysis and experimental validation. Cancers (Basel), 2023, 15(19): 4900. doi: 10.3390/cancers15194900.
|
34. |
Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol, 2023, 23(2): 90-105.
|
35. |
Su C, Lin Y, Cai L, et al. Association between mannose-binding lectin variants, haplotypes and risk of hepatocellular carcinoma: A case-control study. Sci Rep, 2016, 6: 32147. doi: 10.1038/srep32147.
|
36. |
Li J, Li H, Yu Y, et al. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE2 pathway. Oncoimmunology, 2018, 8(2): e1527650. doi: 10.1080/2162402X.2018.1527650.
|
37. |
Laskowski J, Renner B, Pickering MC, et al. Complement factor H-deficient mice develop spontaneous hepatic tumors. J Clin Invest, 2020, 130(8): 4039-4054.
|
38. |
Fan CW, Chen T, Shang YN, et al. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies. Cell Death Dis, 2013, 4(10): e828. doi: 10.1038/cddis.2013.337.
|
39. |
Liu J, Li W, Zhao H. CFHR3 is a potential novel biomarker for hepatocellular carcinoma. J Cell Biochem, 2020, 121(4): 2970-2980.
|
40. |
Chen E, Zou Z, Wang R, et al. Predictive value of a stemness-based classifier for prognosis and immunotherapy response of hepatocellular carcinoma based on bioinformatics and machine-learning strategies. Front Immunol, 2024, 15: 1244392. doi: 10.3389/fimmu.2024.1244392.
|
41. |
Ruan WY, Zhang L, Lei S, et al. An inflammation-associated ferroptosis signature optimizes the diagnosis, prognosis evaluation and immunotherapy options in hepatocellular carcinoma. J Cell Mol Med, 2023, 27(13): 1820-1835.
|
42. |
Blom AM, Villoutreix BO, Dahlbäck B. Complement inhibitor C4b-binding protein-friend or foe in the innate immune system?. Mol Immunol, 2004, 40(18): 1333-1346.
|
43. |
Dong W, Xia Z, Chai Z, et al. Proteomic analysis of small extracellular vesicles from the plasma of patients with hepatocellular carcinoma. World J Surg Oncol, 2022, 20(1): 387. doi: 10.1186/s12957-022-02849-y.
|
44. |
Dalal K, Khorate P, Dalal B, et al. Differentially expressed serum host proteins in hepatitis B and C viral infections. Virusdisease, 2018, 29(4): 468-477.
|
45. |
Xu YQ, Gao YD, Yang J, et al. A defect of CD4+CD25+ regulatory T cells in inducing interleukin-10 production from CD4+ T cells under CD46 costimulation in asthma patients. J Asthma, 2010, 47(4): 367-373.
|
46. |
Li X, Wang Q, Ai L, et al. Unraveling the activation process and core driver genes of HSCs during cirrhosis by single-cell transcriptome. Exp Biol Med (Maywood), 2023, 248(16): 1414-1424.
|
47. |
Liu F, Luo L, Liu Z, et al. A genetic variant in the promoter of CD46 is associated with the risk and prognosis of hepatocellular carcinoma. Mol Carcinog, 2020, 59(11): 1243-1255.
|
48. |
Chen W, Wu Y, Liu W, et al. Enhanced antitumor efficacy of a novel fiber chimeric oncolytic adenovirus expressing p53 on hepatocellular carcinoma. Cancer Lett, 2011, 307(1): 93-103.
|
49. |
Meri S, Morgan BP, Davies A, et al. Human protectin (CD59), an 18 000–20 000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology, 1990, 71(1): 1-9.
|
50. |
Fishelson Z, Donin N, Zell S, et al. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol, 2003, 40(2-4): 109-123.
|
51. |
Abdel-Latif M, Saidan S, Morsy BM. Coenzyme Q10 attenuates rat hepatocarcinogenesis via the reduction of CD59 expression and phospholipase D activity. Cell Biochem Funct, 2020, 38(4): 490-499.
|
52. |
Lan T, Wu H. Abstract 2932: CD59 facilitates tumor progression through activating TGF-β/Smad signaling pathway in hepatocellular carcinoma // Philadelphia: Proceedings: AACR Annual Meeting 2020. doi:10.158/1538-7445.AM2020-2932.
|
53. |
Hu WH, Hu Z, Shen X, et al. C5a receptor enhances hepatocellular carcinoma cell invasiveness via activating ERK1/2-mediated epithelial-mesenchymal transition. Exp Mol Pathol, 2016, 100(1): 101-108.
|
54. |
Kolev M, Markiewski MM. Targeting complement-mediated immunoregulation for cancer immunotherapy. Semin Immunol, 2018, 37: 85-97.
|
55. |
Hsu BE, Tabariès S, Johnson RM, et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep, 2019, 27(13): 3902-3915.
|
56. |
Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther, 2021, 6(1): 404. doi: 10.1038/s41392-021-00817-8.
|
57. |
Medler TR, Murugan D, Horton W, et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell, 2018, 34(4): 561-578.
|
58. |
Li Z, Meng X, Wu P, et al. Glioblastoma cell-derived lncRNA-containing exosomes induce microglia to produce complement C5, promoting chemotherapy resistance. Cancer Immunol Res, 2021, 9(12): 1383-1399.
|
59. |
Yang C, Yang F, Chen X, et al. Overexpression of complement C5a indicates poor survival and therapeutic response in metastatic renal cell carcinoma. Int J Biol Markers, 2023, 38(2): 124-132.
|
60. |
Imamura R, Kitagawa S, Kubo T, et al. Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD-L1 expression by C5a. Prostate, 2021, 81(3): 147-156.
|