- 1. College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China;
- 2. Department of General Surgery, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610040, P. R. China;
1. | Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer, 2022, 22(3): 131-142. |
2. | GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol, 2019, 4(12): 934-947. |
3. | Oettle H, Neuhaus P, Hochhaus A, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA, 2013, 310(14): 1473-1481. |
4. | Park W, Chawla AO, Reilly EM. Pancreatic cancer: a review. JAMA, 2021, 326(9): 851-862. |
5. | Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 2017, 377(25): 2500-2501. |
6. | Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 2020, 38(6): 788-802. |
7. | Makohon-Moore AP, Zhang M, Reiter JG, et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet, 2017, 49(3): 358-366. |
8. | Huang X, Zhang G, Liang T. Subtyping for pancreatic cancer precision therapy. Trends Pharmacol Sci, 2022, 43(6): 482-494. |
9. | Peng J, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res, 2019, 29(9): 725-738. |
10. | Chan-Seng-Yue M, Kim JC, Wilson GW, et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet, 2020, 52(2): 231-240. |
11. | Łuksza M, Sethna ZM, Rojas LA, et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature, 2022, 606(7913): 389-395. |
12. | Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 2023, 618(7963): 144-150. |
13. | Zhong H, Liu S, Cao F, et al. Dissecting tumor antigens and immune subtypes of glioma to develop mRNA vaccine. Front Immunol, 2021, 12: 709986. doi: 10.3389/fimmu.2021.709986. |
14. | Xie N, Shen G, Gao W, et al. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther, 2023, 8(1): 9. doi: 10.1038/s41392-022-01270-x. |
15. | Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662): 222-226. |
16. | Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother, 2014, 10(11): 3354-3368. |
17. | Yanagisawa R, Koizumi T, Koya T, et al. WT1-pulsed dendritic cell vaccine combined with chemotherapy for resected pancreatic cancer in a phase Ⅰ study. Anticancer Res, 2018, 38(4): 2217-2225. |
18. | Shima H, Tsurita G, Wada S, et al. Randomized phase Ⅱ trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma. Cancer Sci, 2019, 110(8): 2378-2385. |
19. | van’t Land FR, Willemsen M, et al. Dendritic cell-based immunotherapy in patients with resected pancreatic cancer. J Clin Oncol, 2024, 42(26): 3083-3093. |
20. | Zheng L, Ding D, Edil BH, et al. Vaccine-induced intratumoral lymphoid aggregates correlate with survival following treatment with a neoadjuvant and adjuvant vaccine in patients with resectable pancreatic adenocarcinoma. Clin Cancer Res, 2021, 27(5): 1278-1286. |
21. | Hardacre JM, Mulcahy M, Small W, et al. Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: a phase 2 study. J Gastrointest Surg, 2013, 17(1): 94-100. |
22. | Strobel O, Neoptolemos J, Jäger D, et al. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol, 2019, 16(1): 11-26. |
23. | Naseri M, Bozorgmehr M, Zöller M, et al. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology, 2020, 9(1): 1779991. doi: 10.1080/2162402X.2020.1779991. |
24. | Xiao L, Erb U, Zhao K, et al. Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology, 2017, 6(6): e1319044. doi: 10.1080/2162402X.2017.1319044. |
25. | Zhou W, Chen X, Zhou Y, et al. Exosomes derived from immunogenically dying tumor cells as a versatile tool for vaccination against pancreatic cancer. Biomaterials, 2022, 280: 121306. doi: 10.1016/j.biomaterials.2021.121306. |
26. | Fathollahi A, Hashemi SM, Haji Molla Hoseini M, et al. In vitro analysis of immunomodulatory effects of mesenchymal stem cell- and tumor cell -derived exosomes on recall antigen-specific responses. Int Immunopharmacol, 2019, 67: 302-310. |
27. | Liu W, Tang H, Li L, et al. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif, 2021, 54(5): e13025. doi: 10.1111/cpr.13025. |
28. | Palmer DH, Valle JW, Ma YT, et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): a single-arm, phase 1/2 trial. Br J Cancer, 2020, 122(7): 971-977. |
29. | Bernhardt SL, Gjertsen MK, Trachsel S, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase Ⅰ/Ⅱ study. Br J Cancer, 2006, 95(11): 1474-1482. |
30. | Middleton G, Silcocks P, Cox T, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol, 2014, 15(8): 829-840. |
31. | Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, et al. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther, 2016, 165: 32-49. |
32. | Cappello P, Rolla S, Chiarle R, et al. Vaccination with ENO1 DNA prolongs survival of genetically engineered mice with pancreatic cancer. Gastroenterology, 2013, 144(5): 1098-1106. |
33. | Yefei Rong, Jin Dayong, Wu Wenchuan, et al. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine[J]. BMC cancer, 2009, 91-11. |
34. | Zhu K, Qin H, Cha SC, et al. Survivin DNA vaccine generated specific antitumor effects in pancreatic carcinoma and lymphoma mouse models. Vaccine, 2007, 25(46): 7955-7961. |
35. | Schmitz-Winnenthal FH, Hohmann N, Schmidt T, et al. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology, 2018, 7(4): e1303584. doi: 10.1080/2162402X.2017.1303584. |
36. | Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer, 2021, 20(1): 52. doi: 10.1186/s12943-021-01339-1. |
37. | Conry RM, LoBuglio AF, Loechel F, et al. A carcinoembryonic antigen polynucleotide vaccine for human clinical use. Cancer Gene Ther, 1995, 2(1): 33-38. |
38. | Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 2017, 2(10): natrevmats201756. doi:10.1038/natrevmats.2017.56. |
39. | Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA vaccines. Adv Drug Deliv Rev, 2021, 170: 83-112. |
40. | Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, et al. mRNA vaccines: The future of prevention of viral infections?. J Med Virol, 2023, 95(2): e28572. doi: 10.1002/jmv.28572. |
41. | Liu Y, Yan Q, Zeng Z, et al. Advances and prospects of mRNA vaccines in cancer immunotherapy. Biochim Biophys Acta Rev Cancer, 2024, 1879(2): 189068. doi: 10.1016/j.bbcan.2023.189068. |
42. | Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother, 2024, 20(1): 2307187. doi: 10.1080/21645515.2024.2307187. |
43. | Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med, 2020, 383(27): 2603-2615. |
44. | Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 2021, 384(5): 403-416. |
45. | Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther, 2022, 7(1): 94. doi: 10.1038/s41392-022-00950-y. |
46. | Lin H, Wang K, Xiong Y, et al. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front Immunol, 2022, 13: 773264. doi: 10.3389/fimmu.2022.773264. |
47. | Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother, 2009, 32(5): 498-507. |
48. | Lutz J, Meister M, Habbeddine M, et al. Local immunotherapy with the RNA-based immune stimulator CV8102 induces substantial anti-tumor responses and enhances checkpoint inhibitor activity. Cancer Immunol Immunother, 2023, 72(5): 1075-1087. |
49. | Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov, 2022, 21(4): 261-282. |
50. | Xia H, McMichael J, Becker-Hapak M, et al. Computational prediction of MHC anchor locations guides neoantigen identification and prioritization. Sci Immunol, 2023, 8(82): eabg2200. doi: 10.1126/sciimmunol.abg2200. |
51. | Yang Y, Wei Z, Cia G, et al. MHCⅡ-peptide presentation: an assessment of the state-of-the-art prediction methods. Front Immunol, 2024, 15: 1293706. doi: 10.3389/fimmu.2024.1293706. |
52. | Racle J, Guillaume P, Schmidt J, et al. Machine learning predictions of MHC-Ⅱ specificities reveal alternative binding mode of class Ⅱepitopes. Immunity, 2023, 56(6): 1359-1375. |
53. | Reynisson B, Alvarez B, Paul S, et al. NetMHCpan-4.1 and NetMHCⅡpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res, 2020, 48(W1): W449-W454. doi: 10.1093/nar/gkaa379. |
54. | Racle J, Michaux J, Rockinger GA, et al. Robust prediction of HLA class Ⅱ epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol, 2019, 37(11): 1283-1286. |
55. | Fasoulis R, Rigo MM, Antunes DA, et al. Transfer learning improves pMHC kinetic stability and immunogenicity predictions. Immunoinformatics (Amst), 2024, 13: 100030. doi: 10.1016/j.immuno.2023.100030. |
56. | Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol, 2021, 14(1): 14. doi: 10.1186/s13045-020-01030-w. |
57. | Huang X, Tang T, Zhang G, et al. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol Cancer, 2021, 20(1): 50. doi: 10.1186/s12943-021-01342-6. |
58. | Wartenberg M, Cibin S, Zlobec I, et al. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance. Clin Cancer Res, 2018, 24(18): 4444-4454. |
59. | Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet, 2015, 47(10): 1168-1178. |
60. | Stouten I, van Montfoort N, Hawinkels LJAC. The tango between cancer-associated fibroblasts (CAFs) and immune cells in affecting immunotherapy efficacy in pancreatic cancer. Int J Mol Sci, 2023, 24(10): 8707. doi: 10.3390/ijms24108707. |
61. | Huang X, Zhang G, Tang TY, et al. Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Mil Med Res, 2022, 9(1): 53. doi: 10.1186/s40779-022-00416-w. |
62. | Jin C, Zhang Y, Li B, et al. Robust anti-tumor immunity through the integration of targeted lipid nanoparticle-based mRNA nanovaccines with PD-1/PD-L1 blockade. Mater Today Bio, 2024, 27: 101136. doi: 10.1016/j.mtbio.2024.101136. |
63. | Linares-Fernández S, Lacroix C, Exposito JY, et al. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol Med, 2020, 26(3): 311-323. |
64. | Pan S, Fan R, Han B, et al. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol, 2024, 45(1): 20-31. |
65. | Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet, 2022, 23(5): 265-280. |
66. | Xu X, Xia T. Recent Advances in Site-Specific Lipid Nanoparticles for mRNA Delivery. ACS Nanosci Au, 2023, 3(3): 192-203. |
67. | Alameh MG, Tombácz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 2022, 55(6): 1136-1138. |
68. | Parayath NN, Stephan SB, Koehne AL, et al. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun, 2020, 11(1): 6080. doi: 10.1038/s41467-020-19486-2. |
69. | Zhang F, Liu W, Long Y, et al. Targeted Delivery of Metformin Against Lung Cancer Cells Via Hyaluronan-Modified Mesoporous Silica Nanoparticles. Appl Biochem Biotechnol, 2023, 195(7): 4067-4083. |
70. | Xu X, Xu L, Wang J, et al. Bioinspired cellular membrane-derived vesicles for mRNA delivery. Theranostics, 2024, 14(8): 3246-3266. |
71. | Brückner M, Fichter M, da Costa Marques R, et al. PEG spacer length substantially affects antibody-based nanocarrier targeting of dendritic cell subsets. Pharmaceutics, 2022, 14(8): 1614. doi: 10.3390/pharmaceutics14081614. |
72. | Chowdhury R, Eslami S, Pham CV, et al. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. Nanoscale, 2024, 16(24): 11457-11479. |
73. | Malla R, Srilatha M, Farran B, et al. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Mol Ther, 2024, 32(1): 13-31. |
74. | Liu X, Huang P, Yang R, et al. mRNA cancer vaccines: Construction and boosting strategies. ACS Nano, 2023, 17(20): 19550-19580. |
75. | Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol, 2024, 24(3): 213-227. |
76. | Lee J, Woodruff MC, Kim EH, et al. Knife’s edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med, 2023, 55(7): 1305-1313. |
77. | Liu A, Wang X. The pivotal role of chemical modifications in mRNA therapeutics. Front Cell Dev Biol, 2022, 10: 901510. doi: 10.3389/fcell.2022.901510. |
78. | Shi Y, Wang Y, Dong H, et al. Crosstalk of ferroptosis regulators and tumor immunity in pancreatic adenocarcinoma: novel perspective to mRNA vaccines and personalized immunotherapy. Apoptosis, 2023, 28(9-10): 1423-1435. |
79. | Mahmood U, Carrier E, Khan K. Neoadjuvant management of locally advanced pancreatic ductal adenocarcinoma—Heading towards a promising change in treatment paradigm. Cancer Treat Rev, 2024, 127: 102750. doi: 10.1016/j.ctrv.2024.102750. |
- 1. Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer, 2022, 22(3): 131-142.
- 2. GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol, 2019, 4(12): 934-947.
- 3. Oettle H, Neuhaus P, Hochhaus A, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA, 2013, 310(14): 1473-1481.
- 4. Park W, Chawla AO, Reilly EM. Pancreatic cancer: a review. JAMA, 2021, 326(9): 851-862.
- 5. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 2017, 377(25): 2500-2501.
- 6. Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 2020, 38(6): 788-802.
- 7. Makohon-Moore AP, Zhang M, Reiter JG, et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet, 2017, 49(3): 358-366.
- 8. Huang X, Zhang G, Liang T. Subtyping for pancreatic cancer precision therapy. Trends Pharmacol Sci, 2022, 43(6): 482-494.
- 9. Peng J, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res, 2019, 29(9): 725-738.
- 10. Chan-Seng-Yue M, Kim JC, Wilson GW, et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet, 2020, 52(2): 231-240.
- 11. Łuksza M, Sethna ZM, Rojas LA, et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature, 2022, 606(7913): 389-395.
- 12. Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 2023, 618(7963): 144-150.
- 13. Zhong H, Liu S, Cao F, et al. Dissecting tumor antigens and immune subtypes of glioma to develop mRNA vaccine. Front Immunol, 2021, 12: 709986. doi: 10.3389/fimmu.2021.709986.
- 14. Xie N, Shen G, Gao W, et al. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther, 2023, 8(1): 9. doi: 10.1038/s41392-022-01270-x.
- 15. Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662): 222-226.
- 16. Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother, 2014, 10(11): 3354-3368.
- 17. Yanagisawa R, Koizumi T, Koya T, et al. WT1-pulsed dendritic cell vaccine combined with chemotherapy for resected pancreatic cancer in a phase Ⅰ study. Anticancer Res, 2018, 38(4): 2217-2225.
- 18. Shima H, Tsurita G, Wada S, et al. Randomized phase Ⅱ trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma. Cancer Sci, 2019, 110(8): 2378-2385.
- 19. van’t Land FR, Willemsen M, et al. Dendritic cell-based immunotherapy in patients with resected pancreatic cancer. J Clin Oncol, 2024, 42(26): 3083-3093.
- 20. Zheng L, Ding D, Edil BH, et al. Vaccine-induced intratumoral lymphoid aggregates correlate with survival following treatment with a neoadjuvant and adjuvant vaccine in patients with resectable pancreatic adenocarcinoma. Clin Cancer Res, 2021, 27(5): 1278-1286.
- 21. Hardacre JM, Mulcahy M, Small W, et al. Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: a phase 2 study. J Gastrointest Surg, 2013, 17(1): 94-100.
- 22. Strobel O, Neoptolemos J, Jäger D, et al. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol, 2019, 16(1): 11-26.
- 23. Naseri M, Bozorgmehr M, Zöller M, et al. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology, 2020, 9(1): 1779991. doi: 10.1080/2162402X.2020.1779991.
- 24. Xiao L, Erb U, Zhao K, et al. Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology, 2017, 6(6): e1319044. doi: 10.1080/2162402X.2017.1319044.
- 25. Zhou W, Chen X, Zhou Y, et al. Exosomes derived from immunogenically dying tumor cells as a versatile tool for vaccination against pancreatic cancer. Biomaterials, 2022, 280: 121306. doi: 10.1016/j.biomaterials.2021.121306.
- 26. Fathollahi A, Hashemi SM, Haji Molla Hoseini M, et al. In vitro analysis of immunomodulatory effects of mesenchymal stem cell- and tumor cell -derived exosomes on recall antigen-specific responses. Int Immunopharmacol, 2019, 67: 302-310.
- 27. Liu W, Tang H, Li L, et al. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif, 2021, 54(5): e13025. doi: 10.1111/cpr.13025.
- 28. Palmer DH, Valle JW, Ma YT, et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): a single-arm, phase 1/2 trial. Br J Cancer, 2020, 122(7): 971-977.
- 29. Bernhardt SL, Gjertsen MK, Trachsel S, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase Ⅰ/Ⅱ study. Br J Cancer, 2006, 95(11): 1474-1482.
- 30. Middleton G, Silcocks P, Cox T, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol, 2014, 15(8): 829-840.
- 31. Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, et al. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther, 2016, 165: 32-49.
- 32. Cappello P, Rolla S, Chiarle R, et al. Vaccination with ENO1 DNA prolongs survival of genetically engineered mice with pancreatic cancer. Gastroenterology, 2013, 144(5): 1098-1106.
- 33. Yefei Rong, Jin Dayong, Wu Wenchuan, et al. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine[J]. BMC cancer, 2009, 91-11.
- 34. Zhu K, Qin H, Cha SC, et al. Survivin DNA vaccine generated specific antitumor effects in pancreatic carcinoma and lymphoma mouse models. Vaccine, 2007, 25(46): 7955-7961.
- 35. Schmitz-Winnenthal FH, Hohmann N, Schmidt T, et al. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology, 2018, 7(4): e1303584. doi: 10.1080/2162402X.2017.1303584.
- 36. Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer, 2021, 20(1): 52. doi: 10.1186/s12943-021-01339-1.
- 37. Conry RM, LoBuglio AF, Loechel F, et al. A carcinoembryonic antigen polynucleotide vaccine for human clinical use. Cancer Gene Ther, 1995, 2(1): 33-38.
- 38. Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 2017, 2(10): natrevmats201756. doi:10.1038/natrevmats.2017.56.
- 39. Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA vaccines. Adv Drug Deliv Rev, 2021, 170: 83-112.
- 40. Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, et al. mRNA vaccines: The future of prevention of viral infections?. J Med Virol, 2023, 95(2): e28572. doi: 10.1002/jmv.28572.
- 41. Liu Y, Yan Q, Zeng Z, et al. Advances and prospects of mRNA vaccines in cancer immunotherapy. Biochim Biophys Acta Rev Cancer, 2024, 1879(2): 189068. doi: 10.1016/j.bbcan.2023.189068.
- 42. Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother, 2024, 20(1): 2307187. doi: 10.1080/21645515.2024.2307187.
- 43. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med, 2020, 383(27): 2603-2615.
- 44. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 2021, 384(5): 403-416.
- 45. Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther, 2022, 7(1): 94. doi: 10.1038/s41392-022-00950-y.
- 46. Lin H, Wang K, Xiong Y, et al. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front Immunol, 2022, 13: 773264. doi: 10.3389/fimmu.2022.773264.
- 47. Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother, 2009, 32(5): 498-507.
- 48. Lutz J, Meister M, Habbeddine M, et al. Local immunotherapy with the RNA-based immune stimulator CV8102 induces substantial anti-tumor responses and enhances checkpoint inhibitor activity. Cancer Immunol Immunother, 2023, 72(5): 1075-1087.
- 49. Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov, 2022, 21(4): 261-282.
- 50. Xia H, McMichael J, Becker-Hapak M, et al. Computational prediction of MHC anchor locations guides neoantigen identification and prioritization. Sci Immunol, 2023, 8(82): eabg2200. doi: 10.1126/sciimmunol.abg2200.
- 51. Yang Y, Wei Z, Cia G, et al. MHCⅡ-peptide presentation: an assessment of the state-of-the-art prediction methods. Front Immunol, 2024, 15: 1293706. doi: 10.3389/fimmu.2024.1293706.
- 52. Racle J, Guillaume P, Schmidt J, et al. Machine learning predictions of MHC-Ⅱ specificities reveal alternative binding mode of class Ⅱepitopes. Immunity, 2023, 56(6): 1359-1375.
- 53. Reynisson B, Alvarez B, Paul S, et al. NetMHCpan-4.1 and NetMHCⅡpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res, 2020, 48(W1): W449-W454. doi: 10.1093/nar/gkaa379.
- 54. Racle J, Michaux J, Rockinger GA, et al. Robust prediction of HLA class Ⅱ epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol, 2019, 37(11): 1283-1286.
- 55. Fasoulis R, Rigo MM, Antunes DA, et al. Transfer learning improves pMHC kinetic stability and immunogenicity predictions. Immunoinformatics (Amst), 2024, 13: 100030. doi: 10.1016/j.immuno.2023.100030.
- 56. Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol, 2021, 14(1): 14. doi: 10.1186/s13045-020-01030-w.
- 57. Huang X, Tang T, Zhang G, et al. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol Cancer, 2021, 20(1): 50. doi: 10.1186/s12943-021-01342-6.
- 58. Wartenberg M, Cibin S, Zlobec I, et al. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance. Clin Cancer Res, 2018, 24(18): 4444-4454.
- 59. Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet, 2015, 47(10): 1168-1178.
- 60. Stouten I, van Montfoort N, Hawinkels LJAC. The tango between cancer-associated fibroblasts (CAFs) and immune cells in affecting immunotherapy efficacy in pancreatic cancer. Int J Mol Sci, 2023, 24(10): 8707. doi: 10.3390/ijms24108707.
- 61. Huang X, Zhang G, Tang TY, et al. Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Mil Med Res, 2022, 9(1): 53. doi: 10.1186/s40779-022-00416-w.
- 62. Jin C, Zhang Y, Li B, et al. Robust anti-tumor immunity through the integration of targeted lipid nanoparticle-based mRNA nanovaccines with PD-1/PD-L1 blockade. Mater Today Bio, 2024, 27: 101136. doi: 10.1016/j.mtbio.2024.101136.
- 63. Linares-Fernández S, Lacroix C, Exposito JY, et al. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol Med, 2020, 26(3): 311-323.
- 64. Pan S, Fan R, Han B, et al. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol, 2024, 45(1): 20-31.
- 65. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet, 2022, 23(5): 265-280.
- 66. Xu X, Xia T. Recent Advances in Site-Specific Lipid Nanoparticles for mRNA Delivery. ACS Nanosci Au, 2023, 3(3): 192-203.
- 67. Alameh MG, Tombácz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 2022, 55(6): 1136-1138.
- 68. Parayath NN, Stephan SB, Koehne AL, et al. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun, 2020, 11(1): 6080. doi: 10.1038/s41467-020-19486-2.
- 69. Zhang F, Liu W, Long Y, et al. Targeted Delivery of Metformin Against Lung Cancer Cells Via Hyaluronan-Modified Mesoporous Silica Nanoparticles. Appl Biochem Biotechnol, 2023, 195(7): 4067-4083.
- 70. Xu X, Xu L, Wang J, et al. Bioinspired cellular membrane-derived vesicles for mRNA delivery. Theranostics, 2024, 14(8): 3246-3266.
- 71. Brückner M, Fichter M, da Costa Marques R, et al. PEG spacer length substantially affects antibody-based nanocarrier targeting of dendritic cell subsets. Pharmaceutics, 2022, 14(8): 1614. doi: 10.3390/pharmaceutics14081614.
- 72. Chowdhury R, Eslami S, Pham CV, et al. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. Nanoscale, 2024, 16(24): 11457-11479.
- 73. Malla R, Srilatha M, Farran B, et al. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Mol Ther, 2024, 32(1): 13-31.
- 74. Liu X, Huang P, Yang R, et al. mRNA cancer vaccines: Construction and boosting strategies. ACS Nano, 2023, 17(20): 19550-19580.
- 75. Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol, 2024, 24(3): 213-227.
- 76. Lee J, Woodruff MC, Kim EH, et al. Knife’s edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med, 2023, 55(7): 1305-1313.
- 77. Liu A, Wang X. The pivotal role of chemical modifications in mRNA therapeutics. Front Cell Dev Biol, 2022, 10: 901510. doi: 10.3389/fcell.2022.901510.
- 78. Shi Y, Wang Y, Dong H, et al. Crosstalk of ferroptosis regulators and tumor immunity in pancreatic adenocarcinoma: novel perspective to mRNA vaccines and personalized immunotherapy. Apoptosis, 2023, 28(9-10): 1423-1435.
- 79. Mahmood U, Carrier E, Khan K. Neoadjuvant management of locally advanced pancreatic ductal adenocarcinoma—Heading towards a promising change in treatment paradigm. Cancer Treat Rev, 2024, 127: 102750. doi: 10.1016/j.ctrv.2024.102750.